
Remote Sensing of Environment 301 (2024) 113875

Available online 5 December 2023
0034-4257/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Comprehensive accuracy assessment of long-term geostationary 
SEVIRI-MSG evapotranspiration estimates across Europe 

Bagher Bayat *, Rahul Raj , Alexander Graf , Harry Vereecken , Carsten Montzka 
Institute of Bio- and Geosciences: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany   

A R T I C L E  I N F O   

Keywords: 
ET 
SEVIRI 
Geostationary 
Accuracy assessment 
Heterogeneity analysis 
Intercomparison 
Europe 

A B S T R A C T   

This study quantifies the accuracy of evapotranspiration (ET) estimates from the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) geostationary sensor onboard the Meteosat Second Generation (MSG) satellites, along 
seven key dimensions, i.e., diurnal cycle, daily, intra-annual, inter-annual, ecosystem, climate zone, and products 
intercomparison. In situ measurements were collected at 54 eddy covariance (EC) sites to evaluate the accuracy 
of SEVIRI actual ET products (diurnal and daily SEVIRI-ETa) as well as reference ET (daily SEVIRI-ET0) covering 
the period from 2004 to 2018 across Europe. SEVIRI-ETa is produced by the Tiled ECMWF Surface Scheme of 
Exchange processes at the Land surface (TESSEL) model, while SEVIRI-ET0 is estimated by a combination of a 
thermodynamically-based and an atmospheric boundary layer model. This evaluation is further separated ac
cording to the land cover heterogeneity of the SEVIRI pixels across all 54 EC sites, using MODIS land cover data. 
The Root Mean Squared Error (RMSE), along with the Kling-Gupta efficiency (KGE) and their respective de
compositions, were employed to quantify the errors. 

For diurnal SEVIRI-ETa estimates, we found that the KGE (RMSE [mm hour− 1]) varied between − 1.6 (0.04) to 
0.8 (0.14), with a median value of 0.26 (0.07). Higher accuracy for diurnal SEVIRI-ETa was obtained in the 
summer and during the mid-day time. For daily SEVIRI-ETa, the KGE (RMSE [mm day− 1]) varied between − 0.88 
(0.43) to 0.93 (1.79), with a median value of 0.6 (0.77) and for daily SEVIRI-ET0 the KGE (RMSE [mm day− 1]) 
varied between 0.51 (0.40) to 0.94 (1.50), with a median value of 0.77 (0.57). For daily SEVIRI-ETa, intra-annual 
accuracy was low from January to March, increased in the mid-year, and then began to decline from November 
to December. Although accuracy remained relatively stable during the middle of the year, it varied considerably 
in the winter period. In the inter-annual dimension, the mid-year positive KGE values and distributions changed 
over time from 2004 to 2018. In spatial dimensions, the highest accuracy was in peat and grassland ecosystems, 
and the lowest in cropland ecosystem, with similar patterns observed in the boreal snow fully humid warm 
summer and warm temperate fully humid hot summer climate zones. Regarding SEVIRI-ET0 results, similar to 
SEVIRI-ETa, intra-annual accuracy was low in the first quarter of the year and the last one but high in the mid- 
year. In the inter-annual dimension, unlike SEVIRI-ETa, almost an identical pattern was observed for the mid- 
year positive KGE values, demonstrating only a slight change in SEVIRI-ET0 accuracy during 2004–2018. 
However, the highest accuracy was found in crop ecosystem, while the lowest was in forest ecosystem, reflecting 
similar trends in the warm temperate fully humid hot summer and warm temperate summer dry hot summer 
climate zones. The observed range of median RMSE changed between 0.4 and 1.5 mm day− 1, also suggests a 
reasonable accuracy for SEVIRI-ET estimates in all spatial domains. 

Our results showed that the main trends in the accuracies (median KGEs) of SEVIRI-ET (both ETa and ET0) 
remained similar in separated homogeneous and heterogeneous sites and were comparable to combined sites 
among the dimensions. Through error decomposition, we discerned that SEVIRI-ET estimates performed 
particularly well in explaining inter-annual and spatial variabilities. Furthermore, the intercomparison of ET 
products revealed that SEVIRI satellite-derived ETa exhibited the strongest correlation with in situ ET mea
surements across all ecosystem types and climate zones, outperforming other products (such as MODIS, PML, 
GLEAM, and BESS). The ET estimates from other products exhibited lower standard deviation errors and were in 
closer agreement with the in situ measurements. This study provides the first comprehensive evaluation of the 
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accuracy of SEVIRI diurnal and daily ET products across Europe, which may serve as a stimulus for further 
optimized selection of these products by potential users for various applications.   

1. Introduction 

Evapotranspiration (ET) is one of the main climate variables that 
connects energy, water, and carbon cycles. It is the sum of water evap
orated from land surfaces, vegetation and water surfaces, and transpired 
by the vegetation canopy (Bayat et al., 2018; Hu et al., 2015a; Majozi 
et al., 2017). Accurate estimates of ET are, therefore, relevant for the 
study of climate change (meteorology and climatology), ecosystem 
functioning (ecology), food supply (agriculture), water balance (hy
drology), and the interactions between water and ecological systems 
(ecohydrology). Due to high spatio-temporal variability, ET cannot be 
measured directly over large domains. Remote sensing spectral obser
vations can overcome direct ET measurement challenges if used 
appropriately in ET algorithms and models, eventually resulting in 
spatio-temporal ET estimates. However, proper accuracy assessment 
and quantification of the errors associated with each ET algorithm and 
estimate are still challenging. 

Widely-used algorithms implementing remotely-sensed optical and 
thermal observations include (but are not limited to): (i) energy balance 
(single- and dual-source) approach (Bastiaanssen et al., 1998; Kustas 
and Norman, 1999; Menenti, 1993; Norman et al., 1995; Su, 2002), (ii) 
trapezoid (also named triangle) feature space approach (Gallego-Elvira 
et al., 2013; Garcia et al., 2014; Jiang and Islam, 1999; Merlin et al., 
2014; Nemani and Running, 1989; Nishida et al., 2003), (iii) relatively 
simple physically-based approach utilizing the Penman–Monteith (PM) 
(Dhungel et al., 2014; Ershadi et al., 2015; Westerhoff, 2015) and 
Priestley–Taylor (PT) models (Colaizzi et al., 2014; Priestley and Taylor, 
1972; Szilagyi et al., 2014), and (iv) simplified empirical methods 
(Carlson et al., 1995; Glenn et al., 2010, 2007; Nagler et al., 2005; 
Seguin and Itier, 1983; Wang and Liang, 2008). The above-mentioned 
algorithms and their potentials and limitations are discussed in the 
remote sensing community (as reviewed by Glenn et al. (2007), Li et al. 
(2009), Liou and Kar (2014), Wang and Dickinson (2012), and Zhang 
et al. (2016)). 

These algorithms have been adopted during the last decades to 
generate various ET global products from satellite data. Available long- 
term ET products generated from remote sensing observations and their 
key characteristics have been recently reviewed by Bayat et al. (2021). 
Among the available products, the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) sensor onboard the geostationary orbit 
Meteosat Second Generation (MSG) satellites provide two types of ET 
estimates; SEVIRI-actual ET (hereafter called SEVIRI-ETa) and SEVIRI- 
reference ET (hereafter called SEVIRI-ET0). SEVIRI-ETa indicates the 
sum of water evaporated from soil, vegetation, and water surfaces, and 
water transpired from a vegetation canopy. SEVIRI-ET0 is a kind of 
potential ET from a hypothetical well-watered green grass having 12 cm 
height and 0.23 albedo (Allen et al., 1998). SEVIRI-ET products are 
operationally available and are provided in near real-time at moderate 
spatial (0.05◦) and very high (diurnal and daily) temporal resolutions 
covering the whole MSG field of view by the EUMETSAT Satellite 
Application Facility on Land Surface Analysis (LSA-SAF) (https://datals 
asaf.lsasvcs.ipma.pt/PRODUCTS/; last access: 1 July 2023). These 
observation characteristics make SEVIRI an exciting, and ideal candi
date for monitoring phenomena particularly in water resources that 
potentially evolve at a relatively moderate (seasonal cycle), to extremely 
rapid speed (diurnal cycle) over large (regional to continental) domains. 
For instance, SEVIRI-ET estimates have been employed for the purposes 
of sustainable water management (Petropoulos et al., 2016) and agri
cultural water stress detection (Bayat et al., 2022). 

To estimate SEVIRI-ETa, a simplified Soil-Vegetation-Atmosphere- 
Transfer (SVAT)-based Tiled ECMWF Surface Scheme of Exchange 

processes at the Land surface (TESSEL) model (Balsamo et al., 2009; van 
den Hurk et al., 2000) has been adopted (Ghilain et al., 2011, 2012, 
2014). The TESSEL model was mainly fed with LSA-SAF SEVIRI products 
(i.e., the albedo, the downwelling surface shortwave, and longwave 
fluxes) and atmospheric model outputs (i.e., air and dew point tem
perature, humidity, wind speed, atmospheric pressure, and soil mois
ture). To obtain the SEVIRI-ET0 estimate, a thermodynamically-based 
model (Schmidt, 1915) and an atmospheric boundary layer model 
(applied and evaluated by De Bruin (1983), Jacobs and De Bruin (1992), 
McNaughton and Spriggs (1986), Van Heerwaarden et al. (2010)) are 
combined (De Bruin et al., 2016). The combined model was fed with 
LSA-SAF SEVIRI products (i.e., daily global radiation and downwelling 
surface shortwave flux) and auxiliary information (i.e., air temperature) 
to first obtain daily net radiation over the (reference) grass surface and 
eventually calculate ET0. Therefore, SEVIRI-ET0 estimate is based on 
available radiative energy at the surface (Trigo et al., 2018). For more 
details information about the adopted methodology in SEVIRI-ETa and 
SEVIRI-ET0 estimates, the readers are referred to Ghilain et al. (2011) 
and De Bruin et al. (2016), respectively. 

Dedicated efforts were made to quantify the accuracy of SEVIRI-ET 
(both ETa and ET0). For instance, a range of acceptable correlations 
was reported for various sites resulting from the comparison between 
SEVIRI-ET and in situ ET at hourly time steps in Europe (Ghilain et al., 
2011). A further validation exercise, designed to assess the quality of 
half-hourly SEVIRI-ETa over 16 sites in Europe distributed in different 
types of land cover, showed a high correlation for most of the investi
gated sites, and error values remained within the range of observations 
uncertainty (Gellens-Meulenberghs et al., 2012). The direct comparison 
of daily SEVIRI-ETa and in situ ETa at six sites in Spain and Italy in 2011 
demonstrated a close agreement among all sites (Petropoulos et al., 
2015). Moreover, direct validation of SEVIRI-ETa at daily time steps was 
initially conducted by EUMETSAT as part of their product development. 
In situ measurements of ETa were selected from 48 different sites across 
Europe and Africa from March 2007 to December 2011. Acceptable 
accuracy was reported in this validation exercise for SEVIRI-ETa (Ghi
lain et al., 2018). 

Further, the Penman-Monteith estimated ET0 was compared to 
measured ET0 at the Cabauw grassland site in the Netherlands from 
2007 to 2012 (Trigo et al., 2018). The results showed fair agreement 
between the Penman-Monteith calculated ET0 and measured ET0 at 
Cabauw grass site. A similar strategy was adopted in the EUMETSAT 
initial validation of SEVIRI-ET0. The direct validation has been per
formed by comparison of SEVIRI-ET0 and local ETa measurements, 
mainly in Cabauw, where local measurements of ETa were considered 
identical to ET0 in this site from 2007 to 2012. Their results demon
strated a good agreement between SEVIRI-ET0 and measured ETa (which 
corresponds to ET0) at Cabauw site (Trigo and DeBruin, 2016). 

In the studies described above, the errors associated with SEVIRI-ET 
were quantified mostly for old versions using limited in situ measure
ments independent of site representativeness (heterogeneity analysis). The 
new version of SEVIRI-ET estimates at diurnal (sub-daily) and daily 
steps has just been released (in March 2023) and made available (https: 
//datalsasaf.lsasvcs.ipma.pt/PRODUCTS/; last access: 1 July 2023). 
However, it is still unclear whether the accuracy of new (i.e., version 3) 
diurnal and daily products is stable, whether additionally available 
measurements can be used in the assessment, whether 8-day SEVIRI-ETa 
performance is comparable to widely-used global open-access satellite ET 
products, and whether the representativeness of the in situ sites can affect 
the accuracy analysis results. Moreover, in most of the previous studies, 
the SEVIRI-ET accuracies were quantified mainly for a few land cover 
types. For instance, in the original validation report of SEVIRI-ETa, 
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grouping the accuracy results by land cover type, which was performed 
regardless of the climate and the vegetation fraction, was pointed out as 
one of the key SEVIRI-ETa validation limitations (Ghilain et al., 2018). 

There is still strong interest in: (i) separating the accuracy of SEVIRI- 
ETa and SEVIRI-ET0 into temporal (intra-annual and inter-annual) and 
spatial (ecosystem, and climate zones) dimensions, to provide valuable 
insight into the seasonal, environmental, and climatic conditions lead
ing to stronger (poorer) accuracy, and (ii) conducting an intercompar
ison between the SEVIRI-ETa and widely-used existing open access 
satellite ET products (e.g., MODIS, PML, GLEAM, and BESS) to assess the 
performance of such satellite ET estimates with in situ measurements 
across various ecosystem types and climate zones to gain a better un
derstanding of the products (dis)similarities and accuracy. This contri
bution is required to understand the strengths and weaknesses of the 
products. Although the main aim of such accuracy assessment of satellite 
products is usually to inform potential users about the product uncer
tainty, the modelers can additionally benefit from the results, for 
instance, by revisiting their underlying models assumptions and 
parametrization and pave the way for further improvements both in the 
models and final SEVIRI-ET estimates. The current study is focused 
particularly on these aspects, in detail, aiming to answer key questions: 
(i) how does overall diurnal and daily SEVIRI-ET accuracy varies among 
the sites? (ii) how does the daily SEVIRI-ET accuracy vary along the year 
(intra-annual dimension) and between years (inter-annual dimension)? 
(iii) can we observe differences in daily SEVIRI-ET accuracy between the 
sites considering different ecosystems, and different climate zones? (iv) 
is the performance of SEVIRI ETa estimate comparable to other widely- 
used relevant satellite ET products? and (v) how is the accuracy 
assessment of SEVIRI-ET affected by the site heterogeneity, and are the 
results comparable among the separated (homogeneous and heterogo
neous) sites? 

The main objectives of the current study are: (i) to perform an 
extensive accuracy assessment of diurnal and daily SEVIRI-ETa and daily 
SEVIRI-ET0 products against in situ measurements at 54 Eddy Covari
ance (EC) sites across Europe between 2004 and 2018, (ii) to separate 
the SEVIRI-ET product accuracy into temporal (intra-annual and inter- 
annual) and spatial (ecosystem, and climate zones) dimensions across 
Europe, (iii) to compare SEVIRI-ETa products with four global ET 
products, i.e., MODIS, PML, GLEAM, BESS, which are freely available for 
users, and (iv) to perform homogeneity (heterogeneity) analysis of 
SEVIRI-ET pixels surrounding the in situ sites to understand the repre
sentativeness of the site and whether the errors are comparable among 
the homogeneous and heterogeneous pixels. 

2. Data 

2.1. SEVIRI Satellite ET data set 

All available diurnal (sub-daily) and daily SEVIRI-ETa and daily 
SEVIRI-ET0 data from January 2004 to December 2018 were selected for 
this study (Table 1). These time-series data are published by LSA SAF 
with specific names of METv3, MDMETv3, and METREF, respectively. 

The data is available in standard Hierarchical Data Format (HDF) and 
network Common Data Form (netCDF) files (https://datalsasaf.lsasvcs. 
ipma.pt; last access: 1 July 2023). All three datasets of SEVIRI-ET 
covered the full MSG disk area (i.e., Europe, Africa, and the eastern 
part of South America). 

In total, 257,506 diurnal SEVIRI-ETa images and 10,825 daily images 
(i.e., 5413 SEVIRI-ET0 and 5412 SEVIRI-ETa) were analyzed in this 
study. All the available images collected for the period 2004 to 2018 
were used for the accuracy assessment. Processing of SEVIRI-ET satellite 
data was conducted using the R software program version 3.6.3 (R Core 
Team, 2020) using relevant packages (see acknowledgment section). 
SEVIRI-ET data are distributed at 0.05◦ spatial resolutions. Four samples 
of the diurnal SEVIRI-ETa dataset are shown for the MSG disk in Fig. 1 to 
present an example of the diurnal cycle of ETa on 15 July 2015. 

Further, two sample data sets of daily SEVIRI-ET0 and SEVIRI-ETa in 
2016 and 2018 are presented for the MSG disk global coverage in Fig. 2 
to show the daily variation of ET0 and ETa. 

2.2. In situ measurements 

This study used EC measurements from 54 sites to obtain both 
diurnal and daily time series of in situ ETa and calculate in situ ET0 from 
2004 to 2018. The distribution of these sites across Europe is shown in 
Fig. 3, and their essential characteristics are listed in Table A1 of the 
Appendix. 

As shown in Fig. 3, these EC sites are spread across the European 
continent. More information about the in situ ETa and ET0 measure
ments and processing are provided in the methods section (section 3.1). 

2.3. MODIS land cover data 

MODIS land cover data were used in this study to extract land cover 
fractions of SEVIRI pixels from the EC sites to perform pixel homoge
neity analysis. Land cover data for 2016 at 0.004◦ resolution (Fig. 4a and 
Table 2) was obtained for the whole of Europe from the global products 
(MCD12Q1 V6). The land cover product has six classification schemes 
derived from supervised classifications of MODIS Terra and Aqua 
spectral data. This study used the classification scheme number six (land 
cover type six). More information about the MCD12Q1 V6 product can 
be found at (https://developers.google.com/earth-engine/datase 
ts/catalog/MODIS_006_MCD12Q1; last access: 1 July 2023). 

2.4. Climate zone data 

This study utilized the reanalysed Köppen-Geiger climate map 
(Rubel et al., 2017) to extract the climate dimension information for 54 
EC sites. This map is the updated version (2017) of the widely-used 
climate classification map by Wladimir Köppen and Rudolf Geiger pre
sented in 1961. The re-analyzed Köppen-Geiger climate data has global 
coverage with a higher resolution of 5 arc minutes generated through 
downscaling algorithms. More information about the re-analyzed 
Köppen-Geiger climate map data can be found at (http://koeppen-ge 
iger.vu-wien.ac.at/present.htm; last access: 1 July 2023). The extrac
ted climate zone data for Europe is shown in Fig. 4b, and its key char
acteristics are summarized in Table 3. 

2.5. Ecosystem data 

Ecosystem dimension information for all EC sites was collected from 
site principal investigators and the opinions reflected in recent litera
ture. A simplified four-type (forest, grassland, cropland, and peatland) 
classification of the ecosystems was used for this study, similar to Graf 
et al. (2020). 

Table 1 
SEVIRI ET satellite observations utilized in this study and their main 
characteristics.  

ET 
Products 

LSA SAF 
products 

Temporal 
resolution 

Number 
of 
observations 

Temporal 
coverage 

SEVIRI- 
ETa 

METv3 
diurnal (sub- 
daily) 

257,506 

21/01/2004 to 
31/12/2018 

SEVIRI- 
ETa 

MDMETv3 daily 5412 

SEVIRI- 
ET0 

METREF daily 5413  
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2.6. Global satellite ETa products 

Four global ET products were explored in this study beside SEVIRI- 
ETa to analyze their performances for the period of 2004 to 2018. 
Selected ET products are: Moderate Resolution Imaging Spectroradi
ometer (MODIS) v6 [also known as MOD16A2] (Mu et al., 2011; 
Running et al., 2021), the Penman-Monteith-Leuning (PML) v2 (Zhang 
et al., 2019), the Global Land Evaporation Amsterdam Model (GLEAM) 
v3.7b (Martens et al., 2017; Miralles et al., 2011), and the Breathing 
Earth System Simulator (BESS) v2 (Li et al., 2023). The main charac
teristics of these ET products are summarized in Table 3. 

MODIS ET v6 product, which has been created by means of the 
Penman-Monteith approach (Running et al., 2021), is available for the 
public at the 8-day temporal resolution, 500 m spatial resolution and 
spans from 2001 until now. This product is provided by NASA Land 
Processes Distributed Active Archive Center (LP DAAC) at the United 
States Geological Survey (USGS) Earth Resources Observation and Sci
ence (EROS) center and is available at (https://doi.org/10.5067/MOD 
IS/MOD16A2.006; last access: 1 July 2023). MODIS ET product can 
also be accessed from Earth Engine Data Catalog (https://developers. 
google.com/earth-engine/datasets/catalog; last access: 1 July 2023) 
with the Earth Engine Snippet: ee.ImageCollection (“MODIS/061/ 
MOD16A2”). 

PML ET v2 product is based on Penman-Monteith approach in which 
a water‑carbon coupled canopy conductance model has been employed 
to estimate canopy transpiration (Zhang et al., 2019). PMLv2 product is 
available at 500 m spatial and 8-day temporal resolutions covering the 
period from 2002 to 2020. PML ET v2 product can be accessed from 
Earth Engine Data Catalog with the Earth Engine Snippet: ee. 

ImageCollection (“CAS/IGSNRR/PML/V2_v017”). 
The GLEAM ET v3.7b is produced by means of an algorithm that 

estimates ET sub-components (i.e., transpiration, interception loss, bare 
soil evaporation, snow sublimation, and open-water evaporation) 
separately (Martens et al., 2017; Miralles et al., 2011). Priestley-Taylor 
has been utilized to estimate potential ET, which later was converted to 
actual ET by making use of the multiplicative, evaporative stress factor. 
The stress factor is a function of microwave vegetation optical depth, as 
a proxy of vegetation water content and simulations of soil moisture at 
the root zone. The Gash analytical model of rainfall interception has 
been adopted for interception loss calculation. The GLEAM ET v3.7b 
data is published at 0.25◦ spatial and daily temporal resolutions span
ning from 2003 until 2022 and can be obtained from GLEAM sever 
(www.gleam.eu; last access: 1 July 2023). 

The BESSv2 ET product is based on an improved process-based 
coupled model, i.e., BESS, in which a newly developed ecosystem 
respiration module, and an optimality-based maximum carboxylation 
rate model are integrated (Li et al., 2023). The BESSv2 data is available 
for the public at the daily temporal resolution, 0.05◦ spatial resolution, 
and spans from 1982 until 2019. This product is provided by the data 
provider and is available at (https://www.environment.snu.ac. 
kr/bessv2; last access: 1 July 2023). 

It should be noted that MOD16A2 and PML datasets are downloaded 
from Earth Engine Data Catalog, while the GLEAM and BESS products 
are obtained from their providers. 

Fig. 1. Diurnal cycle (Sub-daily) SEVIRI-ETa sample data set on 15 July 2018 with MSG disk global coverage; (a) at 06:00, (b) 09:00, (c) 12:00, (d) 15:00.  
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3. Methods 

3.1. In situ ETa and ET0 estimates 

The in situ ET0 and ETa datasets are identical to the ones used by Graf 

et al. (2020), except for filtering out all site-years before 2011, to match 
the temporal extent of the SEVIRI dataset. In-situ ETa data are based on 
raw turbulence measurements at the EC sites (resolution 10 or 20 s− 1), 
which each individual site operator used to compute half-hourly fluxes, 
including the latent heat flux using state-of-the-art protocols (Franz 
et al., 2016; Mauder et al., 2013), and provided in the framework of the 
networks TERENO (www.tereno.net; last access: 1 July 2023) and ICOS 
(www.icos-ri.eu; last access: 1 July 2023). To fill data gaps in ETa, we 
used its statistical relation to ET0 (Fischer et al., 2013; Graf et al., 2014; 
Sun et al., 2010), which, however, varies with location and time. 
Beginning with the first data point of the time series of a station, a 
window was varied in length between 2880 and 5760 (corresponding to 
60 and 120 days of half-hourly data) until the RMSE of ETa predicted 
from ET0 by regression through the origin became minimal. This pro
cedure was repeated for the rest of the time series and independently for 
all stations. A particular issue in using EC ETa as a reference for model or 
remote sensing-based ETa is the energy balance closure problem, where 
less than the available energy from radiation and ground heat flux is 
found in the sum of sensible and latent heat EC fluxes, which may or may 
not indicate an underestimation of EC-based ETa. For the dataset used 
here, Graf et al. (2020) found a closure gap, which may serve as a rough 
indicator of the potential underestimation of 19% to 23%, however in 
good agreement with global long-term studies (Stoy et al., 2013; Wilson 
et al., 2002). Due to the ongoing debate on the origin and partitioning 
between e.g., latent and sensible heat flux of this closure gap, ETa pre
sented here was not subject to an attempt to correct energy balance 
closure. 

Fig. 2. SEVIRI-ETa (left panels) and SEVIRI-ET0 (right panels) sample data set in 2016 and 2018 with MSG disk global coverage; (a) SEVIRI-ETa on 15 July 2016, (b) 
SEVIRI-ET0 on 15 July 2016, (c) SEVIRI-ETa on 15 July 2018, (d) SEVIRI-ET0 on 15 July 2018. 

Fig. 3. The spatial distribution of Eddy-Covariance (EC) sites used in this study.  
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In situ ET0 was calculated using the Penman-Monteith approach 
from locally measured meteorological data from the 54 EC sites 
following the “FAO-56” (Allen et al., 1998) definition for a hypothetical 
grass reference surface. The meteorological input data for this can also 
be subject to occasional data gaps, albeit to a lesser extent then ETa, 
which requires appropriate micrometeorological conditions for valid 
measurements. To enable the computation of continuous ET0 series and 
thus also the filling of ETa, such meteorological input data gaps were 
first filled with proven methods. For the majority of sites provided 
through the ICOS drought 2018 task force (https://doi.org/10.18160/ 
YVR0-4898, last access: 1 July 2023), meteorological data were filled 
according to (Pastorello et al., 2020). For some sites (BE-Lon and Vie, 
DE-BER, EC2, EC4, Fen, Gri, HoH, Kli, Rbw, RuR, RuS, RuW, SfS, Tha, 
ZRK, FR-EM2 and Hes), meteorological data were filled by the authors. 
When and where possible, nearby stations were used with an adapted 
version (Graf, 2017) of the DINEOF method (Beckers and Rixen, 2003); 
all remaining meteorological gaps were filled with the REddyProc 
software (Wutzler et al., 2018). 

3.2. SEVIRI satellite pixel homogeneity analysis 

Quantifying SEVIRI pixel homogeneity can indicate the land cover 
similarity within the pixel and therefore examine the representativeness 
of water fluxes measured in a specific pixel. We analyzed the land cover 
similarity for all SEVIRI pixels surrounding EC flux towers using 0.004◦

MODIS 2016 land cover data. The fraction of every land cover type 

within the SEVIRI pixel was calculated, and pixel purity was defined as 
the fraction of the most dominant land cover type. The key criteria for 
analyzing the pixel homogeneity were adopted from Martínez et al. 
(2020); (1) those pixels that include more than two natural land cover 
types or those with purity index value lower than 65% were considered 
heterogeneous, (2) the pixel purity value of 65% was defined as the 
minimum required purity for the site homogeneity in case of two land 
cover types being present within the pixel, and (3) those pixels with 
pixel purity values higher than 80% were directly assumed homoge
neous. After applying the described criteria, we revisited the outcome of 
the analysis, particularly for homogeneous sites, to ensure that the 
MODIS-derived land cover types agree well with the actual reported 
ecosystem type of the sites. In case of disagreement, we reclassified that 
particular site from homogeneous to heterogeneous. 

Additionally, we compared our land cover heterogeneity results with 
the widely-used Gini-Simpson Index (GSI; Simpson, 1949) for diversity 
to understand the link between these two methods. The GSI has been 
calculated based on land cover types from the MODIS-derived land cover 
dataset as follows: 

GSI = 1 −
∑

i
p2

i (1)  

where pi represents the proportion of SEVIRI pixels belonging to MODIS 
class i and GSI denotes the heterogeneity proxy for the SEVIRI pixels. 
The value of GSI ranges between 0 and 1. GSI = 0 indicates no diversity, 
while GSI = 1 suggests a great diversity in the landscape. 

3.3. Dimensions information extraction for EC sites 

The climate zone dimensions information for all 54 EC site locations 
were extracted directly from the climate zone map (Fig. 4b). Moreover, 
for intra-annual and inter-annual dimensions, changes in the accuracy of 
SEVIRI-ET products were investigated within the year and between the 
years in two ways; (1) the variations of SEVIRI-ET errors were captured 
from 2004 to 2018 by visualizing the time series of selected error sta
tistics, (2) the total error statistics were decomposed into spatial and 
temporal components to identify the pure spatial and temporal accu
racies. In the same way, a partial error statistic was computed for each 
dimension by removing the variability along the other dimensions. 

3.4. SEVIRI satellite data set accuracy assessment 

Evaluation of earth observation products allows quantifying and 
understanding errors, making users aware of potential implications for 

Fig. 4. (a) European land cover data (land cover type six) in 2016 from MODIS global land cover at 500 m resolution (MCD12Q1 V6 product), and (b) European re- 
analyzed Köppen-Geiger climate data version 2017 extracted from global re-analyzed Köppen-Geiger at five arc minutes resolution. The map legend is described in 
Table A1 and A2 of the Appendix. 

Table 2 
Additional data products utilized in this study and their main characteristics.  

Product Theme Version Spatial resolution 

MCD12Q1 V6 land cover 2016 0.004◦

Köppen-Geiger climate 2017 5 arc minutes  

Table 3 
Characteristics of global ET products used in this study.  

Product Openly 
accessible 

Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

MOD16A2 Yes 2001-now 500 m 8-day 
PMLv2 Yes 2002–2020 500 m 8-day 
GLEAM 

v3.7b 
Yes 2003–2022 0.25◦ daily 

BESS v2 Yes 1982–2019 0.05◦ daily  
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various applications (Jia et al., 2010; Petropoulos et al., 2015). Without 
sufficient validation, results derived from earth observation may not be 
credible and will cause further challenges when used for monitoring 
purposes (Bayat et al., 2021; Glenn et al., 2011; Mu et al., 2011). In this 
study, a point-by-point validation approach was used to evaluate the 
accuracy of diurnal and daily SEVIRI-ETa and daily SEVIRI-ET0 from 
2004 to 2018 against in situ ETa and ET0 in 54 sites across Europe. 

Kling-Gupta efficiency (KGE) and Root Mean Square Error (RMSE) 
statistics were employed to evaluate SEVIRI-ETa and SEVIRI-ET0 prod
ucts against measured ETa and ET0. 

KGE considers a balanced optimization of product bias, variability, 
and temporal fit to quantify the error efficiently (Gupta et al., 2009). 
KGE and RMSE are calculated as follows: 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σs

σg
− 1
)2

+

(
μs

μg
− 1

)2
√
√
√
√ (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(gi − si)

2

√

(3)  

where r is the linear correlation between in situ ET (ground) measure
ments and SEVIRI-ET (satellite) observations, σs the standard deviation 
in satellite observations, σg the standard deviation in ground measure
ments, μs the satellite mean, and μg the ground mean. The ratios σs/ σg 

and μs/ μg describe the variability error and the bias term, which are also 
called α and β, respectively. The gi and si are the ground measurements 
and satellite observations, i is the sampling time step, and n is the 
number of samples (n = 5412 (for daily ETa), 5413 (for daily ET0), 
257,506 (for diurnal ETa). 

The optimal values of KGE and RMSE are 1 and 0, respectively. KGE 
= 1 indicates a perfect match between ground measurements and sat
ellite observations. Positive KGE values are considered “good”, whereas 
negative KGE values are labeled as “bad” matches. However, it is shown 
that − 0.41 < KGE ≤ 1 can be considered as reasonable performance, and 
KGE = 0.3 as a threshold for behavioural simulations/estimations 
(Knoben et al., 2019). Moreover, low values of RMSE indicate high ac
curacy of the observations. We consider both KGE and RMSE because the 
latter provides an absolute measure of performance, and KGE a relative 
measure of performance. 

The overall error statistics (KGE and RMSE) for all 54 sites were 
calculated based on in situ measurements and SEVIRI-ET observations at 
diurnal and daily steps. This resulted in one set of RMSE and KGE for 
each site. Such overall error statistics were refined in a further step to 
means for each ecosystem types, and climate zones. Moreover, to 
quantify the accuracy at the temporal domain, the time-series of KGE 
and RMSE was calculated for all individual sites at monthly time steps in 
the time series (2004–2018). This resulted in monthly time series of KGE 
and RMSE for all 54 sites under investigation. For the inter-annual 
dimension accuracy assessment, the mean of KGE and RMSE of all 
sites were calculated for each month (therefore, we obtained 15 [years] 
× 12 [months] values for each of KGE and RMSE). By grouping these 
means for the same months across the time series, we obtained the 
median intra-annual KGE and RMSE. It should be added that for the 
error statistics calculations, we always filtered out all rows in the dataset 
that had at least one missing value either at in situ measurement records 
or SEVIRI-ET estimates. 

In addition to the overall and the time series of error statistics 
described above, an additional KGE and RMSE were calculated for each 
dimension by decomposing the data into their spatial and temporal 
variability. This also enabled to further decompose the latter into a 
purely spatial, annual, and intra-annual KGE and RMSE. To calculate 
pure spatial and temporal KGE and RMSE, first, we computed the mean 
ET over the whole time series for each site (Eq. 4 to 12 [we show the 
equations only for KGE here]) and used it as input to the RMSE and KGE 
equations (Eq. 2 and 3) to obtain a purely spatial metric. Second, a total 

RMSE and KGE were calculated by making use of all the individual in 
situ and satellite data from all the stations (Eq. 13 to 15) into the RMSE 
and KGE equations. Third, we removed the means (obtained in the first 
step) from the original data (Eq. 16 and 17) and used such time series (i. 
e., g1

ij and s1
ij) to compute a purely temporal RMSE and KGE by the same 

sets of questions used in the step 2 (Eq. 13 to 15). Fourth, we aggregated 
the time series with site means removed to annual averages for the inter- 
annual metrics (Eq. 18 and 19), and removed them (Eq. 20 and 21) to get 
an intra-annual metric, once again by making use of Eq. 13 to 15 and 
finally, we fed the data into Eq. 2 and 3. In other words, the time series of 
the input data were used to compute site means on the one hand and the 
deviations from those (or the input data with the site means removed) on 
the other hand. Each of the resulting datasets was used like an original 
dataset to calculate one KGE and RMSE for the corresponding 
dimension. 

μgj =
1
n
∑n

i=1
gij i = 1, 2,…, n j = 1, 2,…,m (4)  

μsj =
1
n
∑n

i=1
sij (5)  

σgj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
gij − μgj

)2

√

(6)  

σsj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
sij − μsj

)2

√

(7)  

μg = μ
(
μg1, μg2,…, μgm

)
(8)  

μs = μ(μs1, μs2,…, μsm) (9)  

σg = σ
(
σg1, σg2,…, σgm

)
(10)  

σs = σ(σs1, σs2,…, σsm) (11)  

r =

∑m
j=1

(
μgj − μg

)(
μsj − μs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
μgj − μg

)2∑m

j=1

(
μsj − μs

)2
√ (12)  

σg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

m × n

∑n

i=1

∑m

j=1

(
gij − μg

)2
√

(13)  

σs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

m × n
∑n

i=1

∑m

j=1

(
sij − μs

)2
√

(14)  

r =

∑n
i=1
∑m

j=1

(
gij − μg

)(
sij − μs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑m

j=1

(
gij − μg

)2∑n

i=1

∑m

j=1

(
sij − μs

)2
√ (15)  

g1
ij = gij − μgj (16)  

s1
ij = sij − μsj (17)  

gyj =
1
N

∑N

1
g1

ijy g1
ijy⊂g1

ij N = 1, 2,…, 365 (366) y

= 1, 2,…, 15
(18)  

syj =
1
N

∑N

1
s1

ijy s1
ijy⊂s1

ij (19)  
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g2
ij = g1

ijy − gyj (20)  

s2
ij = s1

ijy − syj (21)  

where i is the sampling time step (similar to Eq. 3), j is the number of in 
situ stations (from 1 to m = 54), y is the years in the series (from 1 to 15), 
μgj is the mean of all individual ET values for a given in situ station (gij), 
μsj is the mean of all individual ET values from the satellite at a given in 
situ station (sij), σgj is the standard deviation of all individual ET values 
of ET values for a given in situ station, σsj is the standard deviation of all 
individual ET values from the satellite at a given in situ station, g1

ij is in 
situ measured time series with site means removed, s1

ij is satellite 
observed time series with site means removed, gyj is the annual mean of 
g1

ijy which is the (annual) subset of g1
ij , syj is the annual mean of s1

ijy which 
is the (annual) subset of s1

ij, g2
ij is in situ measured time series with the site 

and annual means removed, s2
ij is satellite observed time series with the 

site and annual means removed. 
Moreover, it should be noted that in the calculation of inter-annual 

and intra-annual KGEs, the mean terms should theoretically approach 
zero (exactly zero if there were no missing data). In such cases, we set 
the mean ratio of the KGE equal to one due to the fact that there is no 
mean error contributing to the KGE particularly when both means are 
equal and identical (Knoben et al., 2019). 

3.5. ET products intercomparison 

For products intercomparison, ET values have been extracted from 
BESS, MODIS (MOD16A2) and PML satellite products by considering the 
weighted mean (based on area fraction) of all the pixels (of the given 
satellite) falling within the SEVIRI pixel at all 54 sites between 2004 and 
2018. However, for GLEAM data, the ET values have been extracted 
directly from the pixels where the flux towers are located in 54 sites. 
Moreover, daily SEVIRI, GLEAM, and BESS ET data have been converted 
to 8-day sum to make them consistent with MOD16A2 and PML data. 
Taylor diagram (Taylor, 2001), was employed to perform ET products 
intercomparison and assess the 8-day SEVIRI-ETa performance with 
respect to the other four ET products as well as the in situ ET mea
surements. Taylor diagrams have been drawn for various ecosystems 
and climate zones, taking the mean values of all the sites belonging to 
each ecosystem type and climate zone. 

4. Results 

4.1. SEVIRI satellite pixel homogeneity analysis 

SEVIRI pixel homogeneity results are shown in Table A4 of the Ap
pendix. The results showed that 19 of the forest sites, four of the crop 
sites, and one of the grass sites were identified as relatively homoge
neous based on our pixel purity analysis. We identified no homogeneity 
in any peatland sites. Therefore, we assumed that 24 (44.4%) of the total 
sites were relatively homogeneous. Moreover, there were a few sites 
with a pixel purity higher than 80%, and thus initially classified as ho
mogeneous, but they still have to be considered as heterogeneous sites. 
The reason is that the MODIS-derived dominant land cover types do not 
agree with the reported actual ecosystem type of such sites. This can 
partially be attributed to the classification error in the MODIS land cover 
product. 

GSI results showed a variation range of 0 to 0.69, considering all 
individual sites. We observed that in homogeneous sites (based on our 
set criteria and pixel purity analysis), the GSI values were lower than 
0.44. 

4.2. Dimensions information extraction for EC sites 

Information on the two spatial dimensions extracted from related 
sources is shown in Table A5 of the Appendix. Out of 54 (100%) sites, in 
the ecosystem dimension, there are 30 (55.5%) sites located in the forest 
ecosystem, 10 (18.5%) sites in the crop ecosystem, nine (16.6%) sites in 
the grass ecosystem and five (9.2%) sites in the peatland ecosystem. 
Regarding climate zone dimension, three (5.5%) sites in Alpine (polar 
tundra) [A-pt], six (11.11%) in Boreal (snow fully humid cool summer) 
[B-sfhcs], four (7.4%) in Boreal (snow fully humid warm summer) [B- 
sfhws], one (1.8%) in warm temperate fully humid hot summer [WT- 
fhhs], 35 (64.8%) in warm temperate fully humid warm summer [WT- 
fhws], five (9.2%) in warm temperate summer dry hot summer [WT- 
sdhs]. 

It should be noted that the widespread use of ET as the standard 
Köppen-Geiger classification code for Alpine (polar tundra) climate zone 
may potentially confuse readers, as it is also a known acronym for 
evapotranspiration. To mitigate this confusion, we have introduced new 
acronyms specific to different climate zones in our study. One can find 
both the standard Köppen-Geiger classification codes and their corre
sponding new acronyms, as used in this study, in Table A5 of the Ap
pendix for reference. 

4.3. Diurnal (Sub-daily) SEVIRI-ET accuracy 

Time series of diurnal SEVIRI-ETa observations from 2004 to 2018 
were evaluated against available diurnal ETa measurements at 54 EC 
sites, respectively. Table 4 shows the statistical error metrics computed 
between SEVIRI-ETa and in situ ET at the diurnal time step. 

At diurnal products of SEVIRI-ETa, the KGE varied between − 1.6 to 
0.8 across different sites, with a median value of 0.26. Considering the 
RMSE, the variation range obtained from 0.04 to 0.14 mm hour− 1 with 
the median value of 0.07 mm hour− 1. Separating the diurnal SEVIRI-ETa 
error statistics based on homogeneous (and heterogeneous) sites showed 
a KGE range of − 0.38 (− 1.6) to 0.78 (0.8) with the median value of 0.2 
(0.29) and RMSE range of 0.04 mm hour− 1 (0.04 mm hour− 1) to 0.08 
(0.14) with a median value of 0.07 (0.07). Considering the scatterplots 
and temporal patterns at the diurnal scale, a fair agreement was found 
between SEVIRI-ETa and in situ ETa at most sites. As representative 
examples at the diurnal level, the scatterplots between SEVIRI-ETa and 
in situ ETa are shown in Fig. 5 for a grassland (IT-Tor site in Fig. 5a), a 
forest (RU-Fyo in Fig. 5b), a peatland (CZ-wet in Fig. 5c) and a cropland 
(BE-Lon in Fig. 5d) site. 

Diurnal temporal profiles of SEVIRI-ETa and in situ ETa are shown in 
Fig. 6 for a grassland (IT-Tor site in Fig. 6a), a forest (RU-Fyo in Fig. 6b), 
a peatland (CZ-wet in Fig. 6c) and a cropland (BE-Lon in Fig. 6d) site. 
While for most of the shown sites and years agreement was fair, SEVIRI 
overestimated in situ measurements, especially for the site CZ-wet. 

The accuracy change in diurnal SEVIRI-ETa demonstrated a kind of 
diurnal cycle behavior during the day (Fig. 7). However, the observed 
diurnal cycle in the accuracy was not identical across the months of the 
year and ecosystems. Considering the months of June in the whole time- 
series, for instance, at IT-Tor grassland (Fig. 7b) and RU-Fyo forest site 
(Fig. 7d), we observed the highest accuracy (IT-Tor: median KGE ≈ 0.45 
and RU-Fyo: KGE ≈ 0.30) in the mid-day time (IT-Tor: around 07:00 to 
18:00, and RU-Fyo: around 10:00 to 16:00). Although more fluctuations 
were observed in the diurnal cycle accuracy at CZ-wet peatland (Fig. 7f) 
and BE-Lon crop site (Fig. 7h) in the mid-day, the highest accuracy was 
found later in the afternoon time. In CZ-wet site, the accuracy started 
increasing (from median KGE ≈ − 1.6) at 05:00 and reached the 
maximum accuracy (up to median KGE ≈ 0.3) around 18:00 in June. In 
BE-Lon site, almost a similar pattern was observed as in CZ-wet, but the 
increase in the accuracy was smoother, it started increasing (from me
dian KGE ≈ − 1.4) at 06:00, and later in the evening, it reached the 
maximum accuracy (upto median KGE ≈ 0.5) around 18:00. However, 
relatively lower (unstable) accuracy (mostly median KGE < 0) were 

B. Bayat et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 301 (2024) 113875

9

observed for all four sites in the month of January (left panels of Fig. 7) 
from 2004 to 2018. 

4.4. Daily SEVIRI-ET accuracy 

Time series of SEVIRI-ETa and SEVIRI-ET0 observations from 2004 to 
2018 were evaluated against available daily ETa and ET0 measurements 
at 54 EC sites, respectively. Table 5 shows the statistical error metrics 
computed between daily SEVIRI-ET (both ETa and ET0) and in situ ET 
(both ETa and ET0). 

Considering SEVIRI-ETa, the KGE varied between − 0.88 to 0.93 
across different sites, with a median value of 0.60. Regarding the RMSE, 
the variation range was from 0.43 to 1.79 mm day− 1 with the median 
value of 0.77 mm day− 1. SEVIRI-ET0 comparison results revealed a 
range of KGE values from 0.51 to 0.94 with a median value of 0.77 and 

RMSE ranging between 0.40 mm day− 1 to 1.50 mm day− 1 with a median 
value of 0.57 mm day− 1. Separating the SEVIRI-ETa error statistics based 
on homogeneous (and heterogeneous) sites showed the KGE range of 
− 0.88 (− 0.31) to 0.88 (0.93) with the median value of 0.54 (0.61) and 
RMSE range of 0.51 (0.43) to 1.25 (1.79) with the median value of 0.76 
(0.78). In the case of SEVIRI-ET0, the results showed the KGE range of 
0.51 (0.58) to 0.90 (0.94) with a median value of 0.77 (0.76) and RMSE 
range of 0.44 (0.4) to 1.51 (1.44) with the median value of 0.56 (0.60). 

Considering the SEVIRI-ET0 error statistics based on homogeneous 
(and heterogeneous) sites demonstrated the KGE range of 0.51 (0.56) to 
0.84 (0.94) with the median value of 0.76 (0.77) and RMSE range of 
0.44 (0.40) to 1.09 (1.5) with the median value of 0.57 (0.58). All in
dividual sites in Table 5 with KGE > 0.3 were considered for exploring 
the accuracy in further spatial and temporal dimensions. At those sites 
with lower KGE, we mainly observed higher variability error and higher 
bias. In total, 47 and 54 sites have been utilized to perform dimensional 
accuracy assessment for SEVIRI-ETa and SEVIRI-ET0, respectively. 

Furthermore, the long-term comparison of results demonstrated a 
close agreement in the scatterplots and temporal patterns between 
SEVIRI-ET and in situ ET at most sites for both ETa and ET0. As repre
sentative examples, the scatterplots between SEVIRI-ET and in situ ET 
are shown in Fig. 8 for a grassland (IT-Tor site in Fig. 8a & b), a forest 
(RU-Fyo in Fig. 8c & d), a peatland (CZ-wet in Fig. 8e & f) and a cropland 
(BE-Lon in Fig. 8g & h) site. 

Corresponding temporal profiles between SEVIRI-ET and in situ ET 
are shown in Fig. 9 for a grassland (IT-Tor site in Fig. 9a & b), a forest 
(RU-Fyo in Fig. 9c & d), a peatland (CZ-wet in Fig. 9e & f) and a cropland 
(BE-Lon in Fig. 9g & h) site. 

4.4.1. Intra-annual dimension 
Intra-annual dimension analysis showed variations in the accuracy of 

the SEVIRI-ETa (Fig. 10: left panels) and SEVIRI-ET0 (Fig. 10: right 
panels) along the year. The results demonstrated that the accuracy was 
low in the first quarter of the year (from January to March), increased in 
the mid-year (from April to October), and then began to decline in the 
last quarter (from November to December). However, accuracy 
remained relatively stable during the mid-year (SEVIRI-ETa: 0.3 < me
dian KGE < 0.5 and SEVIRI-ET0: 0.1 < median KGE < 0.65), it varied 
considerably in the first quarter (SEVIRI-ETa: − 2.3 < median KGE <
0 and SEVIRI-ET0: − 3 < median KGE < 0) and the last quarter (SEVIRI- 
ETa: − 3 < median KGE < -0.4 and SEVIRI-ET0: − 3.2 < median KGE <
-0.7) (Fig. 10a & b). Comparatively short boxplots in mid-year (Fig. 10a 
& b) confirmed the high levels of agreement between the SEVIRI-ET and 
in situ ET during this period, while broader distributions of the accuracy 
were obtained in the first and the last quarter. Almost similar trends in 
the accuracy of SEVIRI-ET (both ETa and ET0) were detected when we 
considered heterogeneous (Fig. 10c & d) and homogeneous (Fig. 10e & 
f) pixels separately, albeit with some fluctuations, especially in negative 
KGE distributions. 

4.4.2. Inter-annual dimension 
Inter-annual variability of the SEVIRI-ET accuracy is shown in Fig. 11 

(SEVIRI-ETa: left panels and SEVIRI-ET0: right panels). The results 
revealed that, for the whole time series from 2004 to 2018, the degree of 
agreement between SEVIRI-ET and in situ ET was low in the first quarter 
of the year, increased in the mid-year, and then declined again at the last 
quarter (Fig. 11a & b). However, this trend varied between SEVIRI-ETa 
and SEVIRI-ET0 considerably. In the SEVIRI-ETa case, the mid-year 
positive KGE varied more from one year to another, and one could see 
a variation between median KGE values and distributions (Fig. 11a). A 
similar trend was observed in the heterogeneous (Fig. 11c) and homo
geneous (Fig. 11e) sub-groups, specifically for positive median KGEs 
variations during the mid-year. However, in the SEVIRI-ET0 case, unlike 
the SEVIRI-ETa, the mid-year positive KGE values were relatively stable 
and did not change significantly from one year to another except in the 
years 2016 and 2017 (Fig. 11b). This demonstrated a slight change in 

Table 4 
Comparison between diurnal SEVIRI-ETa observations and in situ diurnal SEV
IRI-ETa measurements over 54 sites.  

Site KGE [− ] RMSE [mm hour-1] 

BE-Bra 0.61 0.04 
BE-Lon − 0.06 0.07 
BE-Vie 0.29 0.05 
CH-Aws 0.53 0.05 
CH-Cha 0.8 0.05 
CH-Dav 0.52 0.08 
CH-Fru 0.6 0.06 
CH-Lae 0.76 0.08 
CH-Oe2 0.39 0.08 
CZ-BK1 − 0.32 0.08 
CZ-Lnz 0.38 0.06 
CZ-RAJ − 0.79 0.09 
CZ-Stn − 0.14 0.08 
CZ-wet − 1.06 0.14 
DE-BER − 0.11 0.05 
DE-EC2 0.39 0.07 
DE-EC4 0.2 0.07 
DE-Fen 0.15 0.09 
DE-Geb − 0.14 0.08 
DE-Gri 0.2 0.06 
DE-Hai 0.11 0.07 
DE-HoH 0.51 0.06 
DE-Kli 0.02 0.08 
DE-Obe 0.34 0.07 
DE-RbW – – 
DE-RuR 0.53 0.05 
DE-RuS 0.62 0.06 
DE-RuW 0.56 0.07 
DE-SfS 0.32 0.08 
DE-Tha − 0.04 0.09 
DE-ZRK 0.44 0.07 
DK-Sor 0.26 0.07 
ES-Abr − 0.29 0.07 
ES-LM1 0 0.08 
ES-LM2 − 0.26 0.08 
FI-Hyy 0.05 0.06 
FI-Let 0.02 0.06 
FI-Sii 0.63 0.04 
FI-Var − 1.6 0.07 
FR-Bil 0.78 0.07 
FR-EM2 0.01 0.08 
FR-Hes 0.34 0.07 
IT-BCi 0.7 0.07 
IT-Lsn − 0.24 0.09 
IT-SR2 0.13 0.07 
IT-Tor 0.78 0.05 
NL-Loo 0.55 0.06 
RU-Fy2 0.2 0.07 
RU-Fyo 0.41 0.07 
SE-Deg 0.05 0.05 
SE-Htm 0.32 0.04 
SE-Nor 0.36 0.04 
SE-Ros 0.11 0.05 
SE-Svb − 0.38 0.06  
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SEVIRI-ET0 accuracy during the whole period (2004–2018). Such a 
trend was consistent and repeated in heterogeneous (Fig. 11d) and ho
mogeneous (Fig. 11f) sub-groups, specifically for positive median KGEs 
variations during the mid-year. 

4.4.3. Ecosystem dimension 
SEVIRI-ET accuracy results based on ecosystem dimension are shown 

in Fig. 12 (SEVIRI-ETa: left panels and SEVIRI-ET0: right panels). 
Considering the median statistics based on the ecosystem type (i.e., the 
grouping of EC sites based on the type of ecosystem) revealed that the 
highest agreement between SEVIRI-ETa and in situ ETa was found for 
peat and grassland ecosystems (median KGE ≈ 0.72) (Fig. 12a). The 
second best agreement was observed in forest ecosystems (median KGE 
≈ 0.68), while the lowest agreement was observed for cropland eco
systems (median KGE ≈ 0.52). Although such an order in SEVIRI-ETa 
accuracy remained almost similar in homogeneous and heterogeneous 
sites except for croplands and grasslands (Fig. 12a), a wider distribution 
was observed for the KGE values in heterogeneous sub-groups. 

In SEVIRI-ET0, the highest agreement was observed in crop and 
grassland ecosystems (0.81 > median KGE > 0.78 (Fig. 12b). The lowest 

agreement was observed in forest ecosystems (median KGE ≈ 0.73). In 
peatland ecosystems, the median KGE was 0.76 (Fig. 12b). In general, 
agreement in ET0 was better and differed less between ecosystem types 
than agreement in ETa (Fig. 12a). When separating the sites into het
erogeneous and homogeneous, the trend of accuracies remained the 
same; however, certain changes were observed between the absolute 
values of median KGEs, especially in forest and grass ecosystems 
(Fig. 12a). 

Moreover, variations were observed between the median of RMSE 
for SEVIRI-ET estimates. For SEVIRI-ETa (SEVIRI-ET0) an RMSE of about 
0.72 (0.45), 0.74 (0.63), 0.65 (0.60), 0.90 (0.54) mm day− 1 was ob
tained for peatland, forest, grassland and cropland ecosystems, respec
tively (Fig. 12c & d). Similar orders of accuracy and trends were 
detected in heterogeneous and homogeneous sub-groups. 

4.4.4. Climate dimension 
Different levels of agreement were observed between SEVIRI-ET 

products and in situ ET in the climate zone (Fig. 13) dimension (SEV
IRI-ETa: left panels and SEVIRI-ET0: right panels). For SEVIRI-ETa, a 
range 0.37 < median KGE < 0.80 was observed in all climate zones 

Fig. 5. Density scatterplot comparisons of sub-daily SEVIRI-ETa and in situ ETa values over a grassland (IT-Tor site [a]), a forest (RU-Fyo [b]), a peatland (CZ-wet [c]) 
and a cropland (BE-Lon [d]) site. The color representation is based on logarithmically transformed data, using a hexagonal binning approach with 220 bins and a 
logarithmic color scale, highlighting density patterns within the data distribution. Note: the shared legend in Fig. 5a applies to all subplots (Fig. 5a-d), as the color 
scale remains consistent across all subplots. The RMSE, and KGE are shown on the scatterplots. 
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(Fig. 13a). The highest agreement (KGE ≈ 0.80) was obtained for Boreal 
Snow fully humid warm summer (B-sfhws) climate zone. However, 
Warm Temperate fully humid hot summer (WT-fhhs) and Warm 
Temperate summer dry hot summer (WT-sdhs) were identified as the 
zones with the lowest median KGE ≈ 0.36–0.39. 

The KGE results separated for homogeneous/heterogeneous sites 
revealed relatively lower agreement in homogeneous Alpine polar tun
dra (A-pt) with the median KGE ≈ 0.35, and homogeneous Boreal Snow 
fully humid cool summer (B-sfhcs) with the median KGE ≈ 0.45 
(Fig. 13a). For SEVIRI-ET0, the median KGE varied between 0.71 and 
0.85 among all climate zones except for WT-sdhs in which the median 
KGE ≈ 0.58 was obtained (Fig. 13b). Moreover, WT-fhhs was identified 
as a climate zone with the highest agreement (KGE ≈ 0.85). The sepa
rated median KGEs in heterogeneous and homogeneous sites followed 
similar trends as observed in combined (all) sites KGEs in various 
climate zones (Fig. 13b). Moreover, the separated KGE values revealed 
comparable results in homogeneous/heterogeneous sites in most of the 
sites except some differences observed in A-pt and Boreal Snow fully 
humid cool summer (B-sfhcs) in which the homogeneous sites showed 
lower median KGE than heterogeneous ones (Fig. 13b). 

Regarding RMSE variations among climate zones, for SEVIRI-ETa, 
the range 0.6 < median RMSE<1 mm day-1 was obtained in all climate 
zones considering all sites (Fig. 13c). Separating the RMSE values be
tween homogeneous and heterogeneous sites resulted in comparable 
accuracy among these two sub-groups. The median RMSE<1 mm day-1 

was obtained in separated homogeneous and heterogeneous sites in all 
climate zones except for the homogeneous A-pt zone (the median RMSE 
≈ 1.25 mm day-1) (Fig. 13c). For SEVIRI-ET0, the range 0.5 < median 
RMSE < 0.62 mm day-1 was obtained in the majority of climate zones for 
all and heterogeneous sites except in WT-sdhs zone where the highest 
median RMSE of 1.41 mm day-1 was observed (Fig. 13d). 

4.5. Decomposition of diurnal and daily SEVIRI-ET accuracies 

The decomposition of total accuracy resulted in spatial, temporal, 
inter-annual, and intra-annual accuracy components for diurnal SEVIRI- 
ETa (Fig. 14) and daily SEVIRI-ET (Fig. 15: SEVIRI-ETa: left panels and 
SEVIRI-ET0: right panels). The accuracy decomposition results at sub- 
daily (diurnal) level showed that the values of RMSE at single di
mensions (i.e., spatial, temporal, inter-annual, and intra-annual) were 
either lower (“better”) than the total RMSE or remained almost the same 
(“no significant change”) (Fig. 14a). Note that due to the nonlinear 
nature of RMSEs, however, the component values are not strictly addi
tive. This pattern was also preserved in heterogeneous (Fig. 14b) and 
homogeneous (Fig. 14c) groups. For KGE, the one-dimension values 
either were higher (“better”) than total KGE (i.e., temporal and intra- 
annual dimensions) or lower (“worse”) (i.e., spatial and inter-annual 
dimensions) than the total one not only in all diurnal SEVIRI-ETa 
(Fig. 14a) groups but also in heterogeneous (Fig. 14b) and homogeneous 
(Fig. 14c) ones. 

At the daily level, the results revealed that the single dimension 
RMSE was always smaller (“better”) than the total RMSE in both SEVIRI- 
ETa (Fig. 15a) and SEVIRI-ET0 (Fig. 15b). Such a pattern was identically 
observed in both heterogeneous (Fig. 15c & d) and homogeneous 
(Fig. 15e & f) groups. For KGE, the one-dimension values either 
remained almost the same (“no significant change”) as total KGE (i.e., 
temporal and intra-annual dimensions) or were lower (“worse”) (i.e., 
spatial and inter-annual dimensions) than the total one not only in all 
SEVIRI-ETa (Fig. 15a) and SEVIRI-ET0 (Fig. 15b) groups but also in 
heterogeneous (Fig. 15c & d) and homogeneous (Fig. 15e & f) ones. 

4.6. ET products intercomparison 

The error statistics of the satellite ET products for SEVIRI, MODIS 
(MOD16A2), PML, BESS, GLEAM are shown in Taylor diagrams in 
Fig. 16 for selected ecosystem types (left panels) and climate zones (right 

Fig. 6. Temporal profile comparisons of sub-daily SEVIRI-ETa and in situ ETa values over a grassland (IT-Tor site [a]), a forest (RU-Fyo [b]), a peatland (CZ-wet [c]), 
and a cropland (BE-Lon [d]) site. 
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panels). 
The results of ecosystem types showed that, in crop (Fig. 16a), 

SEVIRI (PML) ETa estimates had the highest (lowest) correlation coef
ficient (R) of 0.91 (0.88) with the in situ ET compared to the other ET 
products. In terms of the centered root mean square difference (RMSD) 
and standard deviation (σ), MODIS performed the best (RMSD = 2.76 

and σ = 5.79 mm 8-day− 1), and the SEVIRI performance decreased 
considerably (RMSD = 5.11 and σ = 9.86 mm 8-day− 1) among all the 
products. In the Forest ecosystem (Fig. 16c), similar to crop, SEVIRI 
(PML) ETa estimates showed the highest (lowest) R of 0.82 (0.79) among 
the products. SEVIRI ET estimates had the highest RMSD of 5.43 mm 8- 
day− 1 and σ of 8.63 mm 8-day− 1, while the lowest RMSD (4.53 mm 8- 

Fig. 7. Sub-daily variation (diurnal cycle) of KGE for January (displayed on the left panels) and June (displayed on the right panels) across the whole time-series 
(2004–2018), over a grassland (IT-Tor site [a & b]), a forest (RU-Fyo [c & d]), a peatland (CZ-wet [e & f]) and a cropland (BE-Lon [g & h]) site. 
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day− 1) and σ (7.36 mm 8-day− 1) were obtained in GLEAM and PML ET 
products. The grass ecosystem results (Fig. 16e) showed that SEVIRI ETa 
and BESS ET estimates had the highest (0.81) and lowest (0.77) R among 
the products. The PML was the best (RMSD = 4.85 and σ =7.71 mm 8- 
day− 1), and MODIS was the worst (RMSD = 5.72 and σ = 9.30 mm 8- 
day− 1) product in estimating ET in grass ecosystem. 

Furthermore, the climate zone results demonstrated that, in WT-sdhs 
(Fig. 16b), in general, a lower range of variations was obtained for R 
with the minimum value of 0.38 mm 8-day− 1 for MODIS and the 
maximum value of 0.51 for SEVIRI ETa estimates. Poor performance 
(RMSD = 8.62 and σ =9.77 mm 8-day− 1) was obtained for BESS ET 
estimates, while MODIS performed well (RMSD = 4.98 and σ =3.80 mm 
8-day− 1) among others. In WT-fhws climate zone (Fig. 16d), SEVIRI ETa 
estimates showed the highest R (0.87), RMSD (5.48 mm 8-day− 1), and σ 
(9.60 mm 8-day− 1). In this climate zone, the lowest R (0.84) was 

obtained for PML, while the lowest RMSD (4.21 mm 8-day− 1) and σ 
(7.87 mm 8-day− 1) were observed for the GLEAM ET product. In B-sfhcs 
climate zone (Fig. 16f), all the error statistics were highest (R = 0.86, 
RMSD = 6.33 mm 8-day− 1 and σ =9.64 mm 8-day− 1) in SEVIRI ETa 
estimates and lowest (R = 0.79, RMSD = 3.98 mm 8-day− 1 and σ =6.41 
mm 8-day− 1) in BESS ET product. 

Based on the Taylor diagram results, the SEVIRI satellite was able to 
achieve the highest (the best) R across all ecosystem types and climate 
zones and outperformed the other ET products (Fig. 16). However, the 
lower (better) RMSD and σ values, and therefore, ET estimates closer to 
the in situ measurements, were observed for PML (in forest and grass 
ecosystems), MODIS (in crop ecosystem and WT-sdhs climate zone), 
GLEAM (in forest ecosystem and WT-fhws climate zone) and BESS (in B- 
sfhcs climate zone) products. In WT-sdhs climate zone, all the ET 
products had very low correlations, and the majority of them (except 
MODIS) showed much larger variations than observed, resulting in a 
relatively large RMSD in the ET estimates indicating the failure of sat
ellite ET products to reproduce the in situ ET in this specific climate 
zone. 

5. Discussion 

5.1. Overall diurnal and daily SEVIRI-ET accuracy 

The evaluation resulted overall in a reasonably satisfactory agree
ment between SEVIRI-ET and in situ ET at the individual site level for 
both diurnal (Table 4) and daily SEVIRI-ET (Table 5). Direct accuracy 
assessment (i.e., the comparison of satellite observations with in situ 
measurements) of diurnal SEVIRI-ETa revealed a KGE value of 0.26 
across all 54 sites under investigation. Exploring the KGE components of 
this study yielded median values of 0.84, 1.51, and 1.5 for correlation, 
variability, and bias, respectively, for diurnal SEVIRI-ET. In our study, 
we found a higher correlation (0.84) for diurnal ET compared to the 
reported correlation (0.73) for diurnal ET by EUMETSAT LSA SAF 
(Ghilain et al., 2018). Similarly, for the RMSE at the diurnal level, our 
results showed slightly higher accuracy (median RMSE ≈ 0.07 mm 
hour− 1) compared to the RMSE of 0.08 mm hour− 1 reported by 
EUMETSAT LSA SAF for diurnal ET. 

Our findings here are in line with previous studies where a range of 
correlations (R2: 0.56–0.9) was reported between SEVIRI-ET and in situ 
ET at hourly time step in Europe (Gellens-Meulenberghs et al., 2012; 
Ghilain et al., 2011). Moreover, our results demonstrated that one could 
expect the highest accuracy of diurnal SEVIRI-ETa during the day, for 
instance, from 07:00 to 18:00 for the case of grassland and from 10:00 to 
16:00 for the case of forest. This might be attributed to the fact that 
measuring night-time ET can be challenging due to various uncertainties 
and errors that can occur (Aubinet et al., 2012; Bambach et al., 2022). In 
particular, the eddy covariance method may not be entirely accurate 
when turbulence is poorly developed at night, leading to non-turbulent 
fluxes becoming as significant as turbulent fluxes. Additionally, 
condensation and dew can form on surfaces, including sensors and 
vegetation, during night-time, which may affect measurement accuracy, 
especially for sensors that rely on dry surfaces. In addition, the summer 
time diurnal SEVIRI-ETa showed higher accuracy. This might partly be 
attributed to the complexity of taking reliable measurements during the 
night and winter time. 

For daily SEVIRI-ETa, validation was initially conducted by 
EUMETSAT LSA SAF as part of their product development. A mean R2 of 
0.78 and RMSE of 0.73 mm day− 1 were reported as average statistics in 
their validation exercise for ETa across Europe and Africa from March 
2007 to December 2011 (Ghilain et al., 2018). It is further concluded in 
the EUMETSAT validation report that their results fulfilled the defined 
target accuracy variations range between 55% and 80% for SEVIRI-ETa. 
The median statistics found in the current study (median R2 ≈ 0.77 and 
RMSE ≈ 0.77 mm day− 1) are in line and close to the EUMETSAT vali
dation results of SEVIRI-ETa. Overall, comparable results were observed 

Table 5 
Comparison between daily SEVIRI-ET (both ETa and ET0) observations and in 
situ ET (both ETa and ET0) measurements over 54 sites.  

Site KGE [− ] RMSE [mm day− 1]  

SEVIRI-ETa SEVIRI-ET0 SEVIRI-ETa SEVIRI-ET0 

BE-Bra 0.42 0.75 0.71 0.62 
BE-Lon 0.5 0.84 0.83 0.49 
BE-Vie 0.71 0.78 0.54 0.56 
CH-Aws 0.36 0.7 1.25 0.64 
CH-Cha 0.83 0.82 0.64 0.43 
CH-Dav 0.53 0.8 0.97 0.54 
CH-Fru 0.93 0.78 0.57 0.6 
CH-Lae 0.73 0.77 1.03 0.61 
CH-Oe2 0.75 0.8 0.99 0.48 
CZ-BK1 0.23 0.77 0.99 0.56 
CZ-Lnz 0.76 0.74 0.77 0.7 
CZ-RAJ − 0.15 0.72 1.24 0.64 
CZ-Stn 0.41 0.75 0.88 0.64 
CZ-wet − 0.31 0.84 1.79 0.4 
DE-BER 0.38 0.65 0.65 0.91 
DE-EC2 0.72 0.8 0.84 0.54 
DE-EC4 0.61 0.82 0.86 0.48 
DE-Fen 0.46 0.77 1.33 0.87 
DE-Geb 0.37 0.77 0.92 0.65 
DE-Gri 0.61 0.78 0.65 0.56 
DE-Hai 0.56 0.75 0.75 0.63 
DE-HoH 0.88 0.68 0.64 0.8 
DE-Kli 0.5 0.74 0.97 0.68 
DE-Obe 0.71 0.71 0.81 0.69 
DE-RbW 0.21 0.75 0.93 0.63 
DE-RuR 0.86 0.82 0.45 0.45 
DE-RuS 0.8 0.82 0.77 0.47 
DE-RuW 0.72 0.79 0.86 0.5 
DE-SfS 0.63 0.75 0.82 0.61 
DE-Tha 0.26 0.66 1.06 0.85 
DE-ZRK 0.81 0.86 0.75 0.44 
DK-Sor 0.67 0.83 0.7 0.49 
ES-Abr 0.35 0.59 0.75 1.41 
ES-LM1 0.57 0.58 0.79 1.44 
ES-LM2 0.39 0.56 0.9 1.5 
FI-Hyy 0.41 0.7 0.73 0.62 
FI-Let 0.84 0.77 0.57 0.48 
FI-Sii 0.93 0.76 0.43 0.46 
FI-Var − 0.88 0.51 1.09 1.09 
FR-Bil 0.88 0.8 0.6 0.65 
FR-EM2 0.52 0.8 0.8 0.52 
FR-Hes 0.77 0.71 0.71 0.74 
IT-BCi 0.36 0.84 1.25 0.77 
IT-SR2 0.59 0.94 0.74 0.48 
IT-Tor 0.88 0.9 0.55 0.56 
NL-Loo 0.7 0.81 0.73 0.47 
RU-Fy2 0.64 0.73 0.63 0.58 
RU-Fyo 0.8 0.77 0.64 0.49 
SE-Deg 0.51 0.74 0.69 0.52 
SE-Htm 0.64 0.8 0.51 0.44 
SE-Nor 0.68 0.71 0.52 0.61 
SE-Ros 0.5 0.72 0.6 0.5 
SE-Svb 0.24 0.71 0.83 0.57  
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Fig. 8. Density scatterplot comparisons of SEVIRI and in situ ET values (ETa displayed on the left panels and ET0 on the right panels) over a grassland (IT-Tor site [a 
& b]), a forest (RU-Fyo [c & d]), a peatland (CZ-wet [e & f]) and a cropland (BE-Lon [g & h]) site. The color representation is based on logarithmically transformed 
data, using a hexagonal binning approach with 65 bins and a logarithmic color scale, highlighting density patterns within the data distribution. The RMSE, and KGE 
are shown on the scatterplots. 

Fig. 9. Temporal profile comparisons of SEVIRI-ET and in situ ET values (ETa displayed on the left panels and ET0 on the right panels) over a grassland (IT-Tor site [a 
& b]), a forest (RU-Fyo [c & d]), a peatland (CZ-wet [e & f]) and a cropland (BE-Lon [g & h]) site. 
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between the current study and the EUMETSAT initial validation report. 
Nevertheless, the current study can be considered a supplementary 
validation practice that can add more value by providing further insight 
into the quality of the recently published (version 3) data (2004–2018), 
taking into account more in situ sites (54 sites), albeit all distributed 
across Europe. 

The SEVIRI-ET0 followed well the in situ ET0 in almost all sites (the 
median R2 ≈ 0.92 and RMSE ≈ 0.57 mm day− 1) (Table 5), and the 
agreement was better compared to daily SEVIRI-ETa. This could be 
explained by the fact that the modeling of ET0 is more straightforward 
than ETa since ET0 depends only on meteorological factors and, there
fore, crop and soil characteristics hardly affect ET0. However, SEVIRI- 
ET0 underestimated in situ ET0, which might be attributed to the mea
surement conditions of EC sites. Based on previous studies, if the 
Penman-Monteith approach uses input data measured on a relatively 
different surface, for instance, a drier one than what is prescribed as 
well-watered grass, then the calculated in situ ET0 are over-estimated 

(Droogers and Allen, 2002; Temesgen et al., 1999; Trigo et al., 2018). 
Therefore, we hypothesize that SEVIRI-ET0 are not under-estimated, but 
in situ ET0 estimations are perhaps over-estimated. In contrast to the 
Penman-Monteith method, SEVIRI-ET0 products are not influenced by 
local aridity or advective effects (Trigo and DeBruin, 2016). Our findings 
are further supported by previous validation exercises where good 
agreement was explored between daily SEVIRI-ET0 and in situ ET0 in 
various sites in Germany, the Netherlands, and Spain (Trigo et al., 
2018). 

It is worth mentioning that precise validation of ET0 is a challenging 
task. The most important reason is that taking actual measurements of 
ET0 over a surface corresponding to the one defined by the FAO as a 
reference surface is extremely difficult. Therefore, researchers use 
models to estimate ground-based ET0. In this study, in situ ET0 was 
calculated for 54 sites based on the widely-used Penman-Monteith 
method. Further, the Penman-Monteith estimated ET0 had been 
compared to measured ET0 at the Cabauw grassland site in the 

Fig. 10. SEVIRI-ET accuracies in the intra-annual dimension considering all and separated (i.e., heterogeneous and homogeneous) sites; KGE boxplots for SEVIRI-ETa 
(left panels) and SEVIRI-ET0 (right panels). 
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Netherlands from 2007 to 2012 by Trigo et al. (2018). The Cabauw site 
has been identified as an ideal site that is very close to the FAO-defined 
reference grass. The results showed very good agreement between the 
Penman-Monteith calculated ET0 and measured ET0 at the Cabauw grass 
site, though Penman-Monteith slightly over-estimated the local mea
surements; see Fig. 3b in Trigo et al. (2018). This study is significant 
since it highlighted the accuracy of Penman-Monteith’s estimated ET0 at 
the Cabauw grassland site in the Netherlands (identical to FAO-defined 
reference grass). 

A similar strategy was adopted in the EUMETSAT initial validation of 
SEVIRI-ET0. Although a few more sites were investigated, the direct 
validation was performed by comparison of SEVIRI-ET0 and local ETa 
measurements, mainly in Cabauw, where local measurements of ETa 
were considered identical to ET0 from 2007 to 2012. Their results 
demonstrated good agreement between SEVIRI-ET0 and measured ETa 
at Cabauw site (following well 1:1 line, the bias of 0.1 mm day− 1 and 
standard deviation of 0.3 mm day− 1 (Trigo and DeBruin, 2016). Similar 

to the SEVIRI-ETa case, the current study takes one step forward and 
continues the SEVIRI-ET0 accuracy assessment from 2004 and extends 
the validation exercise till 2018. 

5.2. SEVIRI-ET accuracy in temporal dimensions 

The current study further explored the spatial and temporal di
mensions aspects of daily SEVIRI-ET accuracy, which were not 
addressed in existing research. A validation of SEVIRI-ET against in situ 
ET measurements at selected sites, consistency check with dependent 
variables (e.g., land surface temperature), and ET products (models) 
inter-comparisons were widely explored (Ghilain et al., 2011, 2017, 
2018; Hu et al., 2015b; Majozi et al., 2017; Trigo et al., 2018). These 
studies did not investigate the temporal dimension of accuracy, possibly 
due to the lack of long-term in situ measurements. 

The current study separated the SEVIR-ET accuracy into the intra- 
annual (temporal) dimension. We found that SEVIRI-ET had a lower 

Fig. 11. SEVIRI-ET accuracies in inter-annual dimension considering all and separated (i.e., heterogeneous and homogeneous) sites; KGE barplots for SEVIRI-ETa 
(left panels) and SEVIRI-ET0 (right panels). 
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Fig. 12. SEVIRI-ETa accuracies in the ecosystem dimension considering all and separated (i.e., heterogeneous and homogeneous) sites; KGE and RMSE boxplots for 
SEVIRI-ETa (left panels) and SEVIRI-ET0 (right panels). 

Fig. 13. SEVIRI-ETa accuracies in climate dimension considering all and separated (i.e., heterogeneous and homogeneous) sites; KGE and RMSE boxplots for SEVIRI- 
ETa (left panels) and SEVIRI-ET0 (right panels). 
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accuracy (larger errors) in the first and the last quarter of the year 
(Fig. 10) but higher accuracy (lower errors) in mid-year. The SEVIRI-ET 
data accuracy changed considerably on an annual basis, suggesting that 
one may not rely on an accuracy report derived from a smaller portion of 
in situ measurements taken in a shorter episode during the year (e.g., a 
few consecutive months). Therefore, a fair temporal distribution of the 
in situ measurements within the year to cover the four quarters is 
required as the minimum to ensure an unbiased accuracy assessment. 
Lower accuracy (i.e., lower KGE in Fig. 10) in SEVIRI-ET products in the 
first and last quarter of the year might be attributed to the weather and 
environmental conditions in Europe, forcing the absolute values and 
variability of ET and its drivers to be smaller in winter. However, 
observing good accuracy for SEVIRI-ET estimates in the mid-year has a 
practical implication for those applications that require higher accuracy 
SEVIRI-ET data in the growing season (e.g., crop productivity analysis 
and agricultural water stress detection). 

Investigating inter-annual dimensions of the SEVIRI-ET accuracy 
from 2004 to 2018, we found that the accuracy of SEVIRI-ETa varied 
considerably between years. The change of accuracy was strongly pro
nounced in the mid-year positive KGE values from one year to another 
(Fig. 11: left panels). However, this was not the case in the accuracy of 
SEVIRI-ET0 results since a similar trend and stable temporal profiles 
were found for SEVIRI-ET0, especially for the mid-year positive KGE 
values from 2004 to 2018 (Fig. 11: right panels). This demonstrated that 
SEVIRI-ETa estimates are being affected by crop characteristics and 
environmental conditions (as opposed to ET0, which is only affected by 
atmospheric demand). 

5.3. SEVIRI-ET accuracy in spatial dimensions 

In the ecosystem dimension, satisfactory agreement (the median R2 

≈ 0.77) was observed between SEVIRI-ETa and in situ ETa across eco
systems. This is consistent with the mean correlation of 0.78, reported in 

the initial validation exercise for daily SEVIRI-ETa (Ghilain et al., 2018). 
Furthermore, our results are comparable to previously performed vali
dation exercises. For instance, the direct comparison of daily SEVIRI-ETa 
and in situ ETa at six sites located in different ecosystems (e.g., cropland, 
forest, shrubland, grassland, and diverse forests) of Spain and Italy in 
2011 demonstrated a close agreement (index of agreement = 0.75) 
among all sites (Petropoulos et al., 2015). In another study, a range of 
acceptable correlations (R2: 0.56–0.9) was reported for various ecosys
tems (e.g., grassland and forest) resulting from the comparison between 
SEVIRI-ET and in situ ET at hourly time step in Europe (Ghilain et al., 
2011). 

A further validation exercise designed to assess the quality of half- 
hourly SEVIRI-ETa over 16 sites in Europe, distributed in different 
types of land covers (e.g., grassland, various types of forest, and crop
land), showed a high correlation (R2 > 0.7) for most of the investigated 
sites, and error values remained within the range of observations un
certainty (Gellens-Meulenberghs et al., 2012). We found that grasslands, 
and peatlands (in Fig. 12a) had comparatively higher KGE median 
values in SEVIRI-ETa compared to forests and croplands. This could 
show that natural ecosystems with shorter canopy heights and less 
vegetation coverage may have higher levels of agreement between 
SEVIRI-ETa and measured ETa compared to ecosystems with closed and 
denser canopies (greater biomass). Similar findings were also reported 
for SEVIRI-ETa in previous studies, though with a limited number of six 
observations (Petropoulos et al., 2015). Moreover, the highest agree
ment was found between SEVIRI-ET0 and in situ ET0, in grasslands and 
croplands ecosystems, while the lowest agreement was obtained in 
forest ecosystems. In this case, it might be attributed to the fact that 
grasslands and croplands are closer to the hypothetical FAO-defined 
surface compared to forests. 

Grouping the accuracies based on climate zone, we found that both 
SEVIRI-ETa and SEVIRI-ET0 algorithms reproduced in situ ETa and ET0 
variations in most of the climate zones in Europe. This finding is in line 

Fig. 14. Sub-daily SEVIRI-ETa total accuracy (KGE [− ] and RMSE [mm hour− 1]) decomposition for spatial and temporal dimensions considering (a) all, (b) het
erogeneous, and (c) homogeneous sites. 
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with the validation exercise performed for SEVIRI-ETa for 2007–2011 
(Ghilain et al., 2018) where good agreement was reported between 
SEVIRI-observed and ground-measured latent heat flux in sites sampling 
broad climates (i.e., Mediterranean, Temperate and Boreal climates). 
However, lower agreement (and high errors) was observed for the Warm 
Temperate summer dry hot summer (WT-sdhs) for both SEVIRI-ETa 
(Fig. 13a) and SEVIRI-ET0 (Fig. 13b). One possible reason, or at least a 
hint, might be related to the difficulties in the partitioning of sensible 
and latent heat fluxes in the ETa algorithm (for SEVIRI-ETa) and the 
estimation of the net radiation over the (reference) grass surface (for 
SEVIRI-ET0) in this specific climate zone. Remote sensing ET models, 
usually do not keep track of the water budget in soil and vegetation and 
does not contain an explicit parametrization of the effects of soil mois
ture variations on the stomatal conductance. Therefore, soil moisture 
effects are only manifest if the lack of soil moisture affects the optical or 
thermal appearance of the vegetation. Therefore, estimation of ET from 
optical and thermal satellite observations is more challenging and 
considerably biased in water-limited regions (Bayat et al., 2019; 

Gökmen et al., 2012). However, more research is still required to un
derstand the procedure and gain more information. 

5.4. Decomposition of diurnal and daily SEVIRI-ET error 

Decomposition of total RMSE and KGE can provide information 
about the accuracy of SEVIRI-ET in each of the dimensions by removing 
the impacts of the other dimensions. A dimension is “better captured” 
when both RMSE is small, and KGE is high. In most of the cases, for 
instance, Fig. 14, we obtained lower RMSE and relatively higher KGE in 
single dimensions. However, there might be some cases where RMSE 
and KGE are not in agreement (RMSE improved while KGE deterio
rated), for instance see the inter-annual dimension in Fig. 15c & d. This 
basically means that the answer depends on whether minimizing abso
lute/mean errors ET is more important for the application in question or 
nicely capturing the relative course/pattern of ET even if values and 
their differences are small. 

Overall, from this decomposition analysis, we learned that SEVIRI- 

Fig. 15. SEVIRI-ETa (left panels) and SEVIRI-ET0 (right panels) total accuracy (KGE [− ] and RMSE [mm day− 1]) decomposition for spatial and temporal dimensions 
considering all and separated (i.e., heterogeneous and homogeneous) sites. 
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Fig. 16. Taylor diagrams illustrating the error statistics between the 8-day observed (measured) and satellite ET products (MODIS, SEVIRI, PML, GLEAM, and BESS) 
spanning between 2004 and 2018; Taylor diagrams for assessing the ET products at selected ecosystems (left panels) and climate zones (right panels). The azimuth 
indicates the correlation coefficient, the radial distance represents the standard deviation, and the semicircles centered on the “Observed” label represent the root 
mean standard difference (i.e., error standard deviation). 
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ET estimations (both at diurnal and daily steps) reflect particularly well 
and have higher accuracy (lower RMSE) on the mean ET per site (i.e., 
pure spatial dimension) compared to the time series of each site. 
Therefore, the spatial variability of ET is better explained in SEVIRI 
estimates. Moreover, SEVIRI-ET estimates showed higher accuracy in 
explaining the inter-annual variability compared to the intra-annual 
one. In other cases (e.g., inter-annual dimension for homogeneous 
diurnal SEVIRI-ETa (Fig. 14c) and heterogeneous daily SEVIRI-ET0 
(Fig. 15d), particularly small (good) RMSE were accompanied by small 
(bad) KGE. This means that the absolute magnitude of errors improves 
mainly because of the small variance in the particular dimension (e.g., 
small inter-annual variance in contrast to large intra-annual variance), 
whereas the relative performance of SEVIRI-ET is actually better for the 
other dimension (in the above example, the intra-annual variability). 

5.5. Site representativeness and heterogeneity analysis 

Due to limited footprint information across EC sites, the complexity 
of footprint area quantification, and the limitation in the number of in 
situ sites, previous studies often used the in situ measurements directly 
to validate satellite products. They assumed that flux data collected at 
the tower location can still adequately represent certain fixed areas 
beyond the measured tower (e.g., 1 to 3 km) (Tramontana et al., 2016; 
Verma et al., 2015; Xiao et al., 2014). In reality, however, the fluxes 
measured from the EC system have limited spatial representativeness 
within hundreds of meters (e.g., 250–500 m), while the resolution of the 
space-borne observations can be in the order of several km (in the case of 
SEVIRI-ET, it is about 5 km). Therefore, the spatial mismatch between 
EC sites and satellite estimates should be considered. 

We analyzed the representativeness of EC measurements and 
computed the SEVIRI-ET pixel purity index for all pixels surrounding the 
EC in situ sites considering SEVIRI subpixel land use variability. In 
general, we found 121 (11 × 11) MODIS pixels within each SEVIRI pixel. 
The results demonstrated that 24 sites out of 54 sites (44.4%) were 
relatively homogeneous beyond their footprint area extended up to 5 
km, SEVIRI-ET spatial resolution. Our finding here is comparable with 
the results of Chu et al. (2021), who found that only 25% - 39% of 
AmeriFlux sites had similar land cover types in the areas extending ki
lometers far from the EC towers. These results highlight the need and the 
importance of in situ site representativeness analysis when performing 
an accuracy assessment of remote sensing estimates. 

We further compared our heterogeneity analysis based on the pixel 
purity index with GSI for diversity. We found that GSI is in good 
agreement and fully supports our pixel purity results for all sites we 
classified as homogeneous (based on our pixel purity index). We 
observed that GSI values ranged between 0 and 0.44 for such homoge
neous sites. However, the outcome for heterogeneous sites has to be 
discussed further. If one can assume GSI value of 0.44 as the threshold to 
define heterogeneity, the number of heterogeneous sites would decrease 
from 30 sites to 18 sites (and therefore, homogeneous sites would in
crease from 24 to 36 sites) based on GSI value. In practice, it is chal
lenging to define a threshold to convert continuous numerical GSI values 
(between 0 and 1) to two discrete heterogeneity groups (i.e., relatively 
homogeneous and heterogeneous). This might explain the reason why in 
most previous studies, either all individual GSI values were analyzed 
(Piles et al., 2015) or at least five groups (i.e., [0–0.164], [0.164–0.304], 
[0.304–0.444], [0.444–0.585], [0.585–0.878]) were considered for GSI 
discussions (Ma et al., 2019; Qiao et al., 2022). 

The GSI is heavily weighed toward the most dominant class in the 
pixel, and adding a few new classes with lower land cover fractions will 
fail to change the index. For instance, at the site DK-Sor, we observed 
three land covers of forest (23.6%), grass (2.7%), and crop (73.6%) in
side the same SEVIRI pixel and, therefore, classified the site as hetero
geneous (based on our pixel purity index), while the calculated GSI for 
this site is 0.40, which can be placed in the mid-range of the third group 
of GSI based on previous studies (Ma et al., 2019; Qiao et al., 2022). The 

second example is DE-Gri site, in which three land cover fractions have 
been detected (forest: 70.1%, crop: 27.7%, and grass: 2%). We classified 
this site as heterogeneous according to our pixel purity index, while the 
GSI suggests a value of 0.43. This might explain the reason why it in
troduces more homogeneous sites compared to our pixel purity index 
method. Obviously, at SEVIRI pixel resolution (i.e., about 5 km), all the 
land cover classes contribute to the ET signal, and if there are several 
land cover classes in a given pixel (even if with a lower fraction), one 
should still be careful to assign a homogeneity label for that specific 
pixel. 

Identified homogeneous sites in the current study were assumed to 
be suitable for the accuracy assessment. Therefore, the evaluation of 
SEVIRI-ET was performed for all these homogeneous sites. However, we 
considered two more cases for the accuracy assessments in all five di
mensions: heterogeneous sites and the combined sites (all sites including 
homogeneous and heterogeneous sites). This consideration has two key 
advantages: (i) to understand the impact of the SEVIRI-ET spatial reso
lution and accuracy results between homogeneous and heterogeneous 
sites, (ii) to be able to discuss our results in line with previous SEVIRI-ET 
validation exercises (and perhaps those forthcoming) where all available 
in situ measurements were used, independent of any representativeness 
analysis. 

Inconsistency between accuracies among homogeneous and hetero
geneous sites is related to the varying composition of land covers beyond 
the site footprint areas. The differences in land cover types may origi
nate from the spatial variations of land surface properties (i.e., topog
raphy, ecology, and climatic conditions) and human impacts (i.e., land 
use change and irrigation). Change in land surface properties together 
with temporal dynamics of flux footprints, are the most important rea
sons behind the site heterogeneity and representativeness issue (Chu 
et al., 2021). Moreover, such inconsistency between the accuracies 
might additionally be explained by the limited numbers of representa
tive sites in a specific class within the dimension under investigation 
(representativity limitation). For instance, a difference in the median 
KGE values and the inconsistency of the KGE trends in ecosystem 
dimension was observed between homogeneous and heterogonous 
grasslands and croplands (Fig. 12a). Besides land cover composition, 
these differences and inconsistencies in KGE may occur because of only a 
few identified homogeneous sites, which may not be sufficient for rep
resenting the grassland and cropland ecosystems. The representativity 
limitation was mostly an issue for SEVIRI-ETa analysis that was also 
pronounced in other dimensions (e.g., climate zones). 

Overall, we found that the main trends in the accuracies (median 
KGEs) of SEVIRI-ET remained almost similar in separated homogeneous 
and heterogeneous sites and were comparable to combined sites among 
the dimensions, albeit with possible inter-class variations, as mentioned 
above. The classification of EC sites as homogeneous and heterogeneous 
sites in the current study is done according to the criteria set, the 
objective we defined, the SEVIRI-ET spatial resolution, and the MODIS 
land cover data at 500 m resolution. Therefore, we advocate that our 
representativeness results may serve as a guide and could potentially be 
used in other studies according to the spatial scales of interest. However, 
the representativeness criteria might need to be adapted for specific 
research and desired applications. For instance, in current investigation, 
our emphasis centered on the analysis of pixel heterogeneity, utilizing 
land cover fractions as the primary foundation. Nevertheless, it is 
imperative to recognize that other fundamental components of the 
ecosystem, such as terrain characteristics, soil texture, and vegetation 
density, can exert significant influence on landscape heterogeneity. 
Therefore, it is prudent to consider these variables to develop a more 
comprehensive understanding of spatial heterogeneity. 

It should be noted that the focus of our study was the accuracy 
assessment of SEVIRI-ET products in Europe. Considering SEVIRI’s large 
coverage of data (i.e., Europe, Africa, and the eastern part of South 
America), the study can be extended to the entire MSG disk region. 
There can be limitations when it comes to the availability of reliable 
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ground reference data for the majority of MSG disk coverage, such as 
Africa and South America. 

5.6. ET products intercomparison 

The main intention for performing intercomparison in this study is to 
inform the reader about (dis)similarities between SEVIRI and four 
widely used open-access satellite ET products and to demonstrate the 
error budget of a given ET product with respect to in situ ET measure
ments. The intercomparison between satellite ET products was carried 
out at the spatial resolution of SEVIRI (0.05◦). The weighted average, 
based on area coverage fraction, of all grid cells of MODIS, PML, and 
BESS products falling into the SEVIRI pixel, where the in situ station is 
located, has been taken into account. This is necessary to ensure a 
certain degree of consistency in the spatial characteristics of MODIS, 
PML, and BESS products with that of SEVIRI satellite. However, GLEAM 
ET data has been simply extracted from the pixel in which the in situ 
station has been located due to the coarse resolution of this product. 

In general, reasonable accuracy was obtained for all ET products (i. 
e., SEVIRI, MODIS, PML, BESS, and GLEAM) in reproducing the in situ 
ET in various ecosystems and the majority of climate zones under 
investigation. In WT-sdhs climate zone, however, very low agreements 
were explored between the majority of satellite ET products and in situ 
ET. This might be attributed to the difficulties in the partitioning of 
sensible and latent heat fluxes in the remote sensing ETa algorithms and 
models in this specific climate zone (as discussed in section 5.3). Our 
finding here is in agreement with previous studies where large dissim
ilarities have been reported for satellite ET estimates in arid regions and 
water stress conditions, for instance in MODIS, and PML (Elnashar et al., 
2021) and MODIS and GLEAM ET products (Miralles et al., 2016; 
Weerasinghe et al., 2020). 

We found that SEVIRI ETa estimates outperformed other ET products 
under investigation in this study in terms of higher correlation with the 
in situ ETa measurements. This might partly be related to the extensive 
sampling interval of the SEVIRI satellite due to the fact that SEVIRI 8- 
day ETa estimates are based on original higher temporal resolution 
instantaneous observations that are available at sub-daily (half-hourly) 
steps. However, the higher standard deviation error of 8-day SEVIRI ET 
compared to other satellite ET products might also be partially explained 
by such extensive sampling and their associated errors in the instanta
neous SEVIRI ET products. 

Taylor diagram results suggest that there is no single satellite product 
that can perform best for all cases (e.g., ecosystems and climate zones). A 
similar conclusion has been drawn in previous studies where more 
global ET products have been evaluated (Elnashar et al., 2021; Li et al., 
2018; Vinukollu et al., 2011). This is understandable and can be 
explained by the fact that satellite ET products cannot detect the whole 
range of values and the day-to-day variations precisely, and therefore, 
many satellite ET products carry a considerable amount of bias (Weer
asinghe et al., 2020). 

6. Conclusions 

A comprehensive accuracy assessment were carried out on diurnal 
(sub-daily) SEVIRI-ETa and daily SEVIRI-ET estimates, encompassing 
both ETa and ET0, utilizing all available data acquired between 2004 and 
2018. This evaluation was conducted across 54 selected EC sites in 
Europe. In addition to assessing the accuracy of SEVIRI-ET estimates at 
individual site levels for both diurnal and daily SEVIRI-ET, we also 
examined accuracy across two spatial dimensions (ecosystem and 
climate zone), two temporal dimensions (intra-annual and inter- 
annual), and conducted a general intercomparison with four widely- 
used satellite ET products (BESS, PML, MODIS, and GLEAM). The 
evaluation of diurnal and daily SEVIRI-ET products was mainly based on 
direct validation against corresponding in situ ETa and ET0 at diurnal 
and daily time steps. Prior to our assessment, we conducted a spatial 

analysis at a sub-pixel level to evaluate the homogeneity and hetero
geneity of SEVIRI pixels across all 54 EC sites. This analysis utilized 
0.004◦ resolution MODIS land cover data. The representativeness 
analysis aimed to quantify the accuracy of SEVIRI-ETa and SEVIRI-ET0 
within three sub-groups (homogeneous, heterogeneous, and a combined 
dataset) concerning the spatial and temporal dimensions mentioned 
earlier. 

The validation results demonstrated, in general, close agreement 
between diurnal and daily in situ ET with their correspondence SEVIRI- 
ET, for both ETa and ET0 products. At the diurnal step, higher accuracy 
for SEVIRI-ETa was obtained in the summer and during the day time. 
The accuracies for daily SEVIRI-ETa and SEVIRI-ET0 estimates improved 
significantly. However, variations were found for SEVIRI-ET accuracy in 
both temporal and spatial dimensions. For SEVIRI-ETa, we found that 
intra-annual accuracy was low in the first quarter of the year, increased 
in the mid-year (the second and third quarter), and then began to decline 
in the last quarter. Although accuracy remained relatively stable during 
the mid-year, it varied considerably in the first and the last quarter. 
Moreover, inter-annual variations were observed in the mid-year posi
tive median KGE values over time for the period 2004–2018. At spatial 
dimensions, our findings revealed that the highest accuracy was ach
ieved in the peatland and grassland ecosystems, while the lowest accu
racy was observed in the cropland ecosystem. Similarly, the Boreal snow 
fully humid warm summer climate zone exhibited the highest accuracy, 
whereas the warm temperate fully humid hot summer climate zone had 
the lowest accuracy. For SEVIRI-ET0, we noticed that the intra-annual 
accuracy displayed a comparable trend to what was observed for SEV
IRI-ETa. Specifically, accuracy was low and unstable during the first 
quarter and the last quarter of the year but showed high and stable 
performance in the mid-year. Further, we observed an almost identical 
pattern in the mid-year positive KGE values, indicating a slight variation 
in SEVIRI-ET0 accuracy during the period from 2004 to 2018. At spatial 
dimensions, we found that the highest accuracy was achieved in crop 
ecosystem, while the lowest accuracy was observed in forest ecosystem. 
Similarly, the warm temperate fully humid hot summer climate zone 
exhibited the highest accuracy, whereas the warm temperate summer 
dry hot summer climate zone had the lowest accuracy. 

The error decomposition results revealed that SEVIRI-ETa estimates 
(both diurnal and daily products) performed particularly well in 
explaining inter-annual and spatial variabilities compared to intra- 
annual and temporal variabilities. We found variations in the SEVIRI- 
ET accuracy, separating all (100%) sites into homogeneous (44.4%) 
and heterogonous (55.6%) ones at SEVIRI-ETa spatial resolution. How
ever, the main trends in the accuracies (median KGEs) remained similar 
in separated sites and were comparable to combined sites among the 
dimensions. ET products intercomparison demonstrated that SEVIRI 
satellite outperformed the other ET products in terms of achieving the 
highest (the best) correlation across all ecosystem types and climate 
zones. However, the lower (better) standard deviation error, and 
therefore, ET estimates closer to the in situ measurements, were 
observed for PML (in forest and grass ecosystems), MODIS (in crop 
ecosystem and WT-sdhs climate zone), GLEAM (in forest ecosystem and 
WT-fhws climate zone) and BESS (in B-sfhcs climate zone) products. 
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Appendix A. Additional information and extra details 

Table A1 provides an overview of the 54 sites included in this study (Section 2.2), along with their essential characteristics. Tables A2 and A3 
contain legend descriptions for the MODIS land cover map (Fig. 4a) and the climate zone map (Fig. 4b), respectively. Table A4 presents the results of 
the SEVIRI pixel homogeneity analysis (Section 4.1) conducted on the 54 selected sites across Europe. Finally, Table A5 presents information on 
extracted ecosystem types and climate zones (Section 4.2) for the same 54 European sites.  

Table A1 
Overview of 54 sites used in this study and their essential characteristics, adopted from (Graf et al., 2020). The period of the in situ measurements is 2004–2018.  

Site Longitude (◦) Latitude (◦) Ecosystem Mean annual temperature (◦C) Mean annual precipitation (mm) Elevation (m) Reference 

BE-Bra 4.52 51.31 forest 9.8 750 16 (Gielen et al., 2013) 
BE-Lon 4.75 50.55 crop 10 800 167 (Buysse et al., 2017) 
BE-Vie 6 50.3 forest 7.8 1062 493 (Aubinet et al., 2018) 
CH-Aws 9.79 46.58 grass 2.3 918 1978 (Zeeman et al., 2010) 
CH-Cha 8.41 47.21 grass 9.5 1136 400 (Hörtnagl et al., 2018) 
CH-Dav 9.86 46.82 forest 3.5 1046 1639 (Haeni et al., 2017) 
CH-Fru 8.54 47.12 grass 7.2 1651 982 (Zeeman et al., 2010) 
CH-Lae 8.36 47.48 forest 8.7 1211 689 (Haeni et al., 2017) 
CH-Oe2 7.73 47.29 crop 9.8 1155 452 (Emmel et al., 2018) 
CZ-BK1 18.54 49.5 forest 6.7 1316 875 (Krupková et al., 2017) 
CZ-Lnz 16.95 48.68 forest 9.3 550 150 (Acosta et al., 2017) 
CZ-RAJ 16.7 49.44 forest 7.1 681 625 (McGloin et al., 2018) 
CZ-Stn 17.97 49.04 forest 8.7 685 550 (Krupková et al., 2019) 
CZ-wet 14.77 49.02 peatland 7.7 604 425 (Dušek et al., 2012) 
DE-BER 13.32 52.46 grass 9.4 525 61 (Heusinger and Weber, 2017) 
DE-EC2 8.71 48.93 crop 9.4 889 318 (Poyda et al., 2019) 
DE-EC4 9.77 48.53 crop 7.5 1064 687 (Wizemann et al., 2015) 
DE-Fen 11.06 47.83 grass 8.4 1081 595 (Kiese et al., 2018) 
DE-Geb 10.91 51.1 crop 8.5 470 162 (Anthoni et al., 2004) 
DE-Gri 13.51 50.95 grass 7.8 901 385 (Prescher et al., 2010) 

(continued on next page) 
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Table A1 (continued ) 

Site Longitude (◦) Latitude (◦) Ecosystem Mean annual temperature (◦C) Mean annual precipitation (mm) Elevation (m) Reference 

DE-Hai 10.45 51.08 forest 8.3 720 440 (Knohl et al., 2003) 
DE-HoH 11.22 52.09 forest 9.1 563 193 (Wollschläger et al., 2017) 
DE-Kli 13.52 50.89 crop 7.6 842 478 (Prescher et al., 2010) 
DE-Obe 13.72 50.79 forest 5.5 996 734 (Prescher et al., 2010) 
DE- 

RbW 
10.97 47.73 grass 9.0 1160 769 (Kiese et al., 2018) 

DE-RuR 6.3 50.62 grass 7.7 1033 515 (Post et al., 2015) 
DE-RuS 6.45 50.87 crop 10.2 718 103 (Klosterhalfen et al., 2019) 
DE- 

RuW 
6.33 50.5 forest 7.5 1250 610 (Ney et al., 2019) 

DE-SfS 11.33 47.81 peatland 8.6 1127 590 (Hommeltenberg et al., 2014) 
DE-Tha 13.57 50.96 forest 8.2 843 380 (Prescher et al., 2010) 
DE-ZRK 12.89 53.88 peatland 8.7 584 1 (Franz et al., 2016) 
DK-Sor 11.64 55.49 forest 8.2 660 40 (Wu et al., 2013) 
ES-Abr − 6.79 38.7 forest 16 400 280 (Luo et al., 2018) 
ES-LM1 − 5.78 39.94 forest 16 700 265 (El-Madany et al., 2018) 
ES-LM2 − 5.78 39.93 forest 16 700 270 (El-Madany et al., 2018) 
FI-Hyy 24.29 61.85 forest 3.8 709 180 (Mammarella et al., 2009) 
FI-Let 23.96 60.64 forest 4.6 627 0 (Launiainen et al., 2016) 
FI-Sii 24.19 61.83 peatland 3.5 701 160 (Rinne et al., 2018) 
FI-Var 29.61 67.75 forest − 0.5 601 395 (Kulmala et al., 2019) 
FR-Bil − 0.96 44.49 forest 12.8 930 0 (Moreaux et al., 2011) 
FR-EM2 3.02 49.87 crop 10.8 680 84 (Domeignoz-Horta et al., 2015) 
FR-Hes 7.06 48.67 forest 9.2 820 300 (Granier et al., 2008) 
IT-BCi 14.96 40.52 crop 18 600 15 (Vitale et al., 2009) 
IT-Lsn 12.75 45.74 crop 13.1 1083 1 (Tezza et al., 2019) 
IT-SR2 10.29 43.73 forest 14.2 920 4 (Hoshika et al., 2017) 
IT-Tor 7.58 45.84 grass 2.9 920 2160 (Galvagno et al., 2013) 
NL-Loo 5.74 52.17 forest 9.8 786 25 (Elbers et al., 2011) 
RU-Fy2 32.9 56.45 forest 3.9 711 265 (Esquinas-Requena et al., 2020) 
RU-Fyo 32.92 56.46 forest 3.9 711 265 (Kurbatova et al., 2013) 
SE-Deg 19.56 64.18 peatland 1.2 523 270 (Nilsson et al., 2008) 
SE-Htm 13.42 56.1 forest 7.4 707 115 (van Meeningen et al., 2017) 
SE-Nor 17.48 60.09 forest 5.5 527 46 (Lindroth et al., 2018) 
SE-Ros 19.74 64.17 forest 1.8 614 160 (Jocher et al., 2018) 
SE-Svb 19.77 64.26 forest 1.8 614 270 (Chi et al., 2019)   

Table A2 
The legend descriptions of MODIS land cover map (Fig. 2b), adopted from (https://developers.google.com/earth 
-engine/datasets/catalog/MODIS_006_MCD12Q1#bands; last access: 1 July 2023).  

Land cover class on the map Description of the class 

WB Water Bodies: at least 60% of area is covered by permanent water bodies 
ENT Evergreen Needleleaf Trees: dominated by evergreen conifer trees (>2 m). Tree cover >10% 
EBT Evergreen Broadleaf Trees: dominated by evergreen broadleaf and palmate trees (>2 m). Tree cover >10%. 
DNT Deciduous Needleleaf Trees: dominated by deciduous needleleaf (larch) trees (>2 m). Tree cover >10%. 
DBT Deciduous Broadleaf Trees: dominated by deciduous broadleaf trees (>2 m). Tree cover >10%. 
S Shrub: Shrub (1-2 m) cover >10%. 
G Grass: dominated by herbaceous annuals (<2 m) that are not cultivated. 
CC Cereal Croplands: dominated by herbaceous annuals (<2 m). At least 60% cultivated cereal crops. 
BC Broadleaf Croplands: dominated by herbaceous annuals (<2 m). At least 60% cultivated broadleaf crops. 
UBL Urban and Built-up Lands: at least 30% impervious surface area including building materials, asphalt, and vehicles. 
PSI Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10 months of the year. 
NVL Non-Vegetated Lands: at least 60% of area is non-vegetated barren (sand, rock, soil) with <10% vegetation.   

Table A3 
The legend descriptions of Koppen-Geiger climate zone version 2017 (Fig. 3b), adopted 
from (http://koeppen-geiger.vu-wien.ac.at/present.htm; last access: 1 July 2023).  

Land cover class on the map Description of the class 

BSh Arid_Steppe_hot arid 
BSk Arid_Steppe_cold arid 
BWh Arid_desert_hot arid 
BWk Arid_desert_cold arid 
Cfa Warm Temperate_fully humid_hot summer 
Cfb Warm Temperate_fully humid_warm summer 
Cfc Warm Temperate_fully humid_cool summer 
Csa Warm Temperate_steppe_hot summer 
Csb Warm Temperate_summer dry_warm summer 
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Table A3 (continued ) 

Land cover class on the map Description of the class 

Csc Warm Temperate_ summer dry _cool summer 
Dfa Boreal (Snow_fully humid_hot summer) 
Dfb Boreal (Snow_fully humid_warm summer) 
Dfc Boreal (Snow_fully humid_cool summer) 
Dsb Boreal (Snow_summer dry_warm summer) 
Dsc Boreal (Snow_ summer dry_cool summer) 
ET Alpine (Polar_polar tundra) 
Ocean Ocean   

Table A4 
SEVIRI pixel homogeneity analysis of 54 sites selected across Europe. The pixel purity index and GSI for diversity were calculated for the SEVIRI pixels 
surrounding flux towers using MODIS land cover data. The heterogeneity status of the sites was identified based on the pixel purity index and criteria set 
(section 3.2). The homogeneity failed criteria was also identified in this Table as: (1) more than two natural land cover types found within the SEVIRI 
pixel, (2) pixel purity was lower than 65%, (3) both more than two natural land cover types found within the SEVIRI pixel and pixel purity was lower 
than 65%, (4) MODIS-derived dominant land cover type was different than reported ecosystem type for the given site.  

Site Site ecosystem Pixel purity index (%) Gini-Simpson index (− ) Homogeneous 

BE-Bra forest 66.67 0.44 Yes 
BE-Lon crop 93.75 0.12 Yes 
BE-Vie forest 99.31 0.01 Yes 
CH-Aws grass 86.11 0.24 Yes 
CH-Cha grass 70.83 0.43 No1 

CH-Dav forest 50.69 0.50 No2 

CH-Fru grass 89.58 0.19 No4 

CH-Lae forest 65.97 0.52 No1 

CH-Oe2 crop 64.58 0.47 No3 

CZ-BK1 forest 100.00 0.00 Yes 
CZ-Lnz forest 97.92 0.04 Yes 
CZ-RAJ forest 60.42 0.56 No3 

CZ-Stn forest 100.00 0.00 Yes 
CZ-wet peatland 40.28 0.69 No3 

DE-BER grass 100.00 0.00 No4 

DE-EC2 crop 64.58 0.52 No3 

DE-EC4 crop 52.08 0.56 No3 

DE-Fen grass 72.22 0.40 No4 

DE-Geb crop 100.00 0.00 Yes 
DE-Gri grass 70.14 0.43 No1 

DE-Hai forest 94.44 0.10 Yes 
DE-HoH forest 52.08 0.50 No2 

DE-Kli crop 50.00 0.59 No3 

DE-Obe forest 89.58 0.19 Yes 
DE-RbW grass 72.92 0.39 No4 

DE-RuR grass 83.33 0.28 No4 

DE-RuS crop 59.03 0.55 No3 

DE-RuW forest 100.00 0.00 Yes 
DE-SfS peatland 79.86 0.33 No4 

DE-Tha forest 49.31 0.58 No3 

DE-ZRK peatland 58.33 0.57 No3 

DK-Sor forest 73.61 0.40 No1 

ES-Abr forest 100.00 0.00 No4 

ES-LM1 forest 68.06 0.45 No1 

ES-LM2 forest 68.06 0.45 No1 

FI-Hyy forest 100.00 0.00 Yes 
FI-Let forest 100.00 0.00 Yes 
FI-Sii peatland 90.97 0.16 No4 

FI-Var forest 100.00 0.00 Yes 
FR-Bil forest 88.89 0.20 Yes 
FR-EM2 crop 96.53 0.07 Yes 
FR-Hes forest 54.86 0.59 No3 

IT-BCi crop 47.22 0.57 No3 

IT-Lsn crop 75.00 0.38 Yes 
IT-SR2 forest 70.14 0.47 No1 

IT-Tor grass 72.22 0.40 No4 

NL-Loo forest 100.00 0.00 Yes 
RU-Fy2 forest 99.31 0.01 Yes 
RU-Fyo forest 100.00 0.00 Yes 
SE-Deg peatland 100.00 0.00 No4 

SE-Htm forest 100.00 0.00 Yes 
SE-Nor forest 97.22 0.05 Yes 
SE-Ros forest 100.00 0.00 Yes 
SE-Svb forest 100.00 0.00 Yes   
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Table A5 
Ecosystem and climate zone dimensions were extracted from the related references for 54 sites selected across Europe.  

Site Ecosystem type1 Climate zone2 Köppen-Geiger classification code Adopted acronym 

BE-Bra forest Warm Temperate fully humid warm summer Cfb WT-fhws 
BE-Lon crop Warm Temperate fully humid warm summer Cfb WT-fhws 
BE-Vie forest Warm Temperate fully humid warm summer Cfb WT-fhws 
CH-Aws grass Alpine (polar tundra) ET A-pt 
CH-Cha grass Warm Temperate fully humid warm summer Cfb WT-fhws 
CH-Dav forest Alpine (polar tundra) ET A-pt 
CH-Fru grass Warm Temperate fully humid warm summer Cfb WT-fhws 
CH-Lae forest Warm Temperate fully humid warm summer Cfb WT-fhws 
CH-Oe2 crop Warm Temperate fully humid warm summer Cfb WT-fhws 
CZ-BK1 forest Boreal (Snow fully humid warm summer) Dfb B-sfhws 
CZ-Lnz forest Warm Temperate fully humid warm summer Cfb WT-fhws 
CZ-RAJ forest Warm Temperate fully humid warm summer Cfb WT-fhws 
CZ-Stn forest Warm Temperate fully humid warm summer Cfb WT-fhws 
CZ-wet peatland Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-BER grass Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-EC2 crop Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-EC4 crop Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Fen grass Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Geb crop Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Gri grass Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Hai forest Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-HoH forest Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Kli crop Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Obe forest Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-RbW grass Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-RuR grass Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-RuS crop Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-RuW forest Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-SfS peatland Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-Tha forest Warm Temperate fully humid warm summer Cfb WT-fhws 
DE-ZRK peatland Warm Temperate fully humid warm summer Cfb WT-fhws 
DK-Sor forest Warm Temperate fully humid warm summer Cfb WT-fhws 
ES-Abr forest Warm Temperate summer dry hot summer Csa WT-sdhs 
ES-LM1 forest Warm Temperate summer dry hot summer Csa WT-sdhs 
ES-LM2 forest Warm Temperate summer dry hot summer Csa WT-sdhs 
FI-Hyy forest Boreal (Snow fully humid cool summer) Dfc B-sfhcs 
FI-Let forest Boreal (Snow fully humid warm summer) Dfb B-sfhws 
FI-Sii peatland Boreal (Snow fully humid cool summer) Dfc B-sfhcs 
FI-Var forest Boreal (Snow fully humid cool summer) Dfc B-sfhcs 
FR-Bil forest Warm Temperate fully humid warm summer Cfb WT-fhws 
FR-EM2 crop Warm Temperate fully humid warm summer Cfb WT-fhws 
FR-Hes forest Warm Temperate fully humid warm summer Cfb WT-fhws 
IT-BCi crop Warm Temperate summer dry hot summer Csa WT-sdhs 
IT-Lsn crop Warm Temperate fully humid hot summer Cfa WT-fhhs 
IT-SR2 forest Warm Temperate summer dry hot summer Csa WT-sdhs 
IT-Tor grass Alpine (polar tundra) ET A-pt 
NL-Loo forest Warm Temperate fully humid warm summer Cfb WT-fhws 
RU-Fy2 forest Boreal (Snow fully humid warm summer) Dfb B-sfhws 
RU-Fyo forest Boreal (Snow fully humid warm summer) Dfb B-sfhws 
SE-Deg peatland Boreal (Snow fully humid cool summer) Dfc B-sfhcs 
SE-Htm forest Warm Temperate fully humid warm summer Cfb WT-fhws 
SE-Nor forest Warm Temperate fully humid warm summer Cfb WT-fhws 
SE-Ros forest Boreal (Snow fully humid cool summer) Dfc B-sfhcs 
SE-Svb forest Boreal (Snow fully humid cool summer) Dfc B-sfhcs 

1. Adapted from (Graf et al., 2020). 
2. Extracted from climate zone data (Fig. 4b). 
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Cienciala, E., Marek, M.V., 2017. Comparison of different approaches of radiation 
use efficiency of biomass formation estimation in Mountain Norway spruce. Trees 
31, 325–337. 
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